Section 4.6
 Change of Basis

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:

(1) Relation between bases.
(2) Transition matrix.

Relation between bases

Example 1
Let $V=\mathbb{R}^{2}$. and let $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$ and $\mathcal{B}^{\prime}=\left\{\binom{2}{-1},\binom{-1}{1}\right\}$ be two bases for V.
find
(1) $\binom{2}{2}_{\mathcal{B}}$.
(2) $\binom{2}{2}_{\mathcal{B}^{\prime}}$.
(3) Find v, w such that $(v)_{\mathcal{B}}=(5,6)$ and $(w)_{\mathcal{B}^{\prime}}=(5,6)$
(9) Find v such that $(v)_{\mathcal{B}}=(-2,2)$ and then find $(v)_{\mathcal{B}^{\prime}}$.

Transition Matrix

pause

Theorem 2
Let V be a vector space with two bases \mathcal{B} (old basis) and \mathcal{B}^{\prime} (new basis).
There is a matrix P such that for any v in V we have

$$
(v)_{\mathcal{B}^{\prime}}=P \cdot(v)_{\mathcal{B}}
$$

We will often denote P by $P_{\mathcal{B} \rightarrow \mathcal{B}^{\prime}}$ (transition matrix). Question: How to find the transition matrix? Method 1:
[new basis | old basis] \rightarrow [$I_{n} \mid$ transition matrix from old to new]
Method 2: The column of the transition matrix are the coordinate vectors of the old basis relative to the new basis.

Example 3

Let $V=\mathbb{R}^{2}$. and let $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$ and $\mathcal{B}^{\prime}=\left\{\binom{2}{-1},\binom{-1}{1}\right\}$ be two bases for V.
find
(1) Find the transition matrix from \mathcal{B} to \mathcal{B}^{\prime}.
(2) Given $(v)_{\mathcal{B}}=(-1,-3)$. Find $(v)_{\mathcal{B}^{\prime}}$?

Example 4

Let $V=\mathcal{P}_{2}$. and let $\mathcal{B}=\left\{1, X, X^{2}\right\}$ and $\mathcal{B}^{\prime}=\left\{1,1+X, 1+X+X^{2}\right\}$ be two bases for V.
find
(1) Find the transition matrix from \mathcal{B} to \mathcal{B}^{\prime}.
(2) Given $p(X)=4-2 X+6 x^{2}$. Find $(p(X))_{\mathcal{B}^{\prime}}$?

Example 5

Let $V=\mathcal{P}_{2}$. and let $\mathcal{B}=\left\{1, X, X^{2}\right\}$ and $\mathcal{B}^{\prime}=\left\{1,1+X, 1+X+X^{2}\right\}$ be two bases for V.
find
(1) Find the transition matrix from \mathcal{B} to \mathcal{B}^{\prime}.
(2) Given $p(X)=4-2 X+6 x^{2}$. Find $(p(X))_{\mathcal{B}^{\prime}}$?

Inverse of a transition matrix

Question: What is the inverse of a transition matrix? What is $P_{\mathcal{B} \rightarrow \mathcal{B}^{\prime}}^{-1}$?

Example 6

Let $V=\mathbb{R}^{2}$. and let $\mathcal{B}=\left\{\binom{2}{2},\binom{1}{-2}\right\}$ and $\mathcal{B}^{\prime}=\left\{\binom{-1}{2},\binom{3}{0}\right\}$ be two bases for V.
find
(1) Find the transition matrix from \mathcal{B} to \mathcal{B}^{\prime}.
(2) Find the transition matrix from \mathcal{B}^{\prime} to \mathcal{B}.
(3) Multiple the two matrices together.

Theorem 7

$$
P_{\mathcal{B}^{\prime} \rightarrow \mathcal{B}}=P_{\mathcal{B} \rightarrow \mathcal{B}^{\prime}}^{-1}
$$

Example 8

Let V be the space spanned by $f_{1}=\cos x, f_{2}=\sin x$.
find
(1) Show that $g_{1}=2 \sin x+\cos x$ and $g_{2}=3 \cos x$ form a basis for V.
(2) Find the transition matrix from $\mathcal{B}=\left\{g_{1}, g_{2}\right\}$ to $\mathcal{B}^{\prime}=\left\{f_{1}, f_{2}\right\}$.
(3) Given $h=2 \sin x-5 \cos x$. Find $(h)_{\mathcal{B}}$ and use it to find $(h)_{\mathcal{B}^{\prime}}$.

