Section 4.6 Change of Basis

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:

- Relation between bases.
- Transition matrix.

Relation between bases

Example 1

Let
$$V = \mathbb{R}^2$$
. and let $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ and $\mathcal{B}' = \left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$ be two bases for V .

- $\bullet \binom{2}{2}_{\mathcal{B}}.$
- **3** Find v, w such that $(v)_{\mathcal{B}} = (5,6)$ and $(w)_{\mathcal{B}'} = (5,6)$
- Find v such that $(v)_{\mathcal{B}} = (-2, 2)$ and then find $(v)_{\mathcal{B}'}$.

Transition Matrix

pause

Theorem 2

Let V be a vector space with two bases \mathcal{B} (old basis) and \mathcal{B}' (new basis). There is a matrix P such that for any v in V we have

$$(v)_{\mathcal{B}'} = P \cdot (v)_{\mathcal{B}}$$

We will often denote P by $P_{\mathcal{B}\to\mathcal{B}'}$ (transition matrix). Question: How to find the transition matrix? Method 1:

[new basis | old basis] ightarrow [I_n | transition matrix from old to new]

Method 2: The column of the transition matrix are the coordinate vectors of the old basis relative to the new basis.

Let $V = \mathbb{R}^2$. and let $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ and $\mathcal{B}' = \left\{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$ be two bases for V.

- **①** Find the transition matrix from \mathcal{B} to \mathcal{B}' .
- ② Given $(v)_{\mathcal{B}} = (-1, -3)$. Find $(v)_{\mathcal{B}'}$?

Let $V = \mathcal{P}_2$. and let $\mathcal{B} = \{1, X, X^2\}$ and $\mathcal{B}' = \{1, 1 + X, 1 + X + X^2\}$ be two bases for V.

- Find the transition matrix from \mathcal{B} to \mathcal{B}' .
- ② Given $p(X) = 4 2X + 6x^2$. Find $(p(X))_{\mathcal{B}'}$?

Let $V = \mathcal{P}_2$. and let $\mathcal{B} = \{1, X, X^2\}$ and $\mathcal{B}' = \{1, 1 + X, 1 + X + X^2\}$ be two bases for V.

- Find the transition matrix from \mathcal{B} to \mathcal{B}' .
- ② Given $p(X) = 4 2X + 6x^2$. Find $(p(X))_{B'}$?

Inverse of a transition matrix

Question: What is the inverse of a transition matrix? What is $P_{\mathcal{B}\to\mathcal{B}'}^{-1}$?

Example 6

Let
$$V = \mathbb{R}^2$$
 and let $\mathcal{B} = \left\{ \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \end{pmatrix} \right\}$ and $\mathcal{B}' = \left\{ \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \end{pmatrix} \right\}$ be two bases for V .

find

- Find the transition matrix from \mathcal{B} to \mathcal{B}' .
- ② Find the transition matrix from \mathcal{B}' to \mathcal{B} .
- Multiple the two matrices together.

Theorem 7

$$P_{\mathcal{B}' \to \mathcal{B}} = P_{\mathcal{B} \to \mathcal{B}'}^{-1}$$

Let V be the space spanned by $f_1 = \cos x$, $f_2 = \sin x$.

- **1** Show that $g_1 = 2\sin x + \cos x$ and $g_2 = 3\cos x$ form a basis for V.
- ② Find the transition matrix from $\mathcal{B} = \{g_1, g_2\}$ to $\mathcal{B}' = \{f_1, f_2\}$.
- 3 Given $h = 2\sin x 5\cos x$. Find $(h)_{\mathcal{B}}$ and use it to find $(h)_{\mathcal{B}'}$.