Section 4.7
 Row and Column Spaces

Dr. Abdulla Eid

College of Science
MATHS 211: Linear Algebra

Goal:

(1) Define the Row and Column Spaces of a matrix.
(2) Find basis for the row and column spaces of a matrix.
(3) Relation between column space and null space.

1 - Define row space and column space

Example 1

Consider the matrix

$$
A=\left(\begin{array}{cccc}
2 & -1 & 0 & 1 \\
3 & 5 & 7 & -6 \\
1 & 4 & 2 & 7
\end{array}\right)
$$

(1) Extract from A vectors in \mathbb{R}^{4}
(2) Extract from A subspace in \mathbb{R}^{4}.
(3) Extract from A vectors in \mathbb{R}^{3}.
(9) Extract from A subspace in \mathbb{R}^{3}.

Example 2

Consider the matrix

$$
A=\left(\begin{array}{ccccc}
2 & -1 & 0 & 1 & 9 \\
3 & 5 & 7 & -6 & 4
\end{array}\right)
$$

(1) Extract from A vectors in \mathbb{R}^{5}.
(2) Extract from A subspace in \mathbb{R}^{5}.
(3) Extract from A vectors in \mathbb{R}^{2}.
(9) Extract from A subspace in \mathbb{R}^{2}.

Definition 3

Let A be an $m \times n$ matrix. The subspace of \mathbb{R}^{n} spanned by the row vectors of A is called the row space of A, denoted by $\operatorname{Row}(A)$.

Definition 4

The subspace of \mathbb{R}^{m} spanned by the columns of A is called the column space of A and is denoted by $\operatorname{Col}(A)$.

2 - Finding basis for the column and row space of a matrix

(1) Reduce A into $R R E F$ matrix B.
(2) The basis for the row space of A are those rows in A (or in B) that correspond to the pivot rows in B.
(3) The basis for the column space of A are those columns in A that correspond to the pivot columns in B.

Example 5

Find a basis for the row space and column space of the matrix

$$
A=\left(\begin{array}{cccc}
1 & 4 & 5 & 2 \\
2 & 1 & 3 & 0 \\
-1 & 3 & 2 & 2
\end{array}\right)
$$

Example 6

Find a basis for the row space, column, and null space of the matrix

$$
A=\left(\begin{array}{lll}
1 & -2 & 10 \\
2 & -3 & 18 \\
0 & -7 & 14
\end{array}\right)
$$

Example 7

Find a basis for the row space and column space of the matrix

$$
A=\left(\begin{array}{cc}
3 & 4 \\
-6 & 10
\end{array}\right)
$$

Example 8

Find a basis for the subspace of \mathbb{R}^{4} spanned by the given vectors:
$\mathbf{v}_{1}=(2,4,-2,3), \mathbf{v}_{2}=(-2,-2,2,-4), \mathbf{v}_{3}=(1,3,-1,1)$

3 - Relation between column space and null space

Example 9

Express the product as a linear combination of the columns of A.
(1) $\left(\begin{array}{cc}3 & -1 \\ 1 & 4\end{array}\right)\binom{5}{2}$
(2) $\left(\begin{array}{ccc}5 & 2 & 6 \\ 1 & -1 & 3 \\ 0 & 1 & 7 \\ 1 & 7 & 3 \\ 4 & -1 & -3\end{array}\right)\left(\begin{array}{l}4 \\ 6 \\ 9\end{array}\right)$

3 - Relation between column space and null space

Recall:

$$
\operatorname{Nul}(A):=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}
$$

and by the above

$$
\operatorname{Col}(A):=\left\{b \in \mathbb{R}^{m} \mid A x=b, \text { for some } x \in \mathbb{R}^{n}\right\}
$$

Example 10

Determine whether b is in the column space of A or not.

$$
A=\left(\begin{array}{lll}
0 & 1 & 4 \\
2 & 1 & 1 \\
2 & 2 & 5
\end{array}\right) \quad b=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)
$$

