Section 5.2 Diagonalization

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:

(1) Finding diagonalization of a matrix.
(2) When has a matrix A, a diagonalization?
(3) Benefits of diagonalization of a matrix.

Example 1

Find the Diagonalization of

$$
A=\left(\begin{array}{cc}
2 & -1 \\
10 & -9
\end{array}\right)
$$

Questions: How can we do that? When that can happen? Why would you that in the first place?

Example 2

Write the following matrix

$$
A=\left(\begin{array}{ll}
3 & 0 \\
5 & 3
\end{array}\right)
$$

as $A=P D P^{-1}$, for some matrix P and diagonal matrix D.
Questions: How can we do that?
When that can happen?
Why would you that in the first place?

Example 3

Write the following matrix

$$
A=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

as $A=P D P^{-1}$, for some matrix P and diagonal matrix D.
Questions: How can we do that?
When that can happen?
Why would you that in the first place?

Example 4

Write the following matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 3 & 0 \\
0 & 1 & 3
\end{array}\right)
$$

as $A=P D P^{-1}$, for some matrix P and diagonal matrix D.
Questions: How can we do that?
When that can happen?
Why would you that in the first place?

When can we diagonalize a matrix?

Theorem 5

A is diagonalizable if and only if A has exactly n linearly independent Eigenvectors.

A shortcut (sometimes is useful)
Theorem 6
If A has n distinct Eigenvalues, then A is diagonalizable.

Why diagonalization?

Example 7

Find A^{11}, where

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 2 & 0 \\
0 & -3 & 1
\end{array}\right)
$$

Why diagonalization?

Example 8

Find $A^{1000}, A^{-1000}, A^{2017}, A^{20}$, where

$$
A=\left(\begin{array}{ccc}
1 & -2 & 8 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Why diagonalization?

If A is diagonalizable, i.e., $A=P D P^{-1}$, then we have
(1) $A^{-1}=P D^{-1} P^{-1}$.
(2) $A^{n}=P D^{n} P^{-1}$.
(3) $\operatorname{det}(A)=\operatorname{det}(D)=$ multiplication of the Eigenvalues.
(9) $\operatorname{Rank}(A)=\operatorname{Rank}\left(P D P^{-1}\right)$.
(5) $\operatorname{Nullity}(A)=\operatorname{Nullity}\left(P D P^{-1}\right)$.
(6) $\operatorname{Trace}(A)=\operatorname{Trace}\left(P D P^{-1}\right)$.

