Section 6.3 Orthogonal and orthonormal basis

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:

- Orthogonal and orthonormal basis.
- ② Coordinates relatives to orthonormal basis.
- Orthogonal Projection.
- The Gram–Schmidt Process.

Normalizing Procedure

Goal: To create a unit vector v' from a given vector v.

$$v' = \frac{1}{||v||}v$$

Check that v' indeed is a unit vector!

Orthogonal Set

Definition 1

A set of vectors $\{\mathbf{v}_1\mathbf{v}_2, \dots, \mathbf{v}_n\}$ is called **orthogonal set** if $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \mathbf{0}$, for all $i \neq j$. A set if called **orthonormal basis** if it is orthogonal and each vector is a

unit vector.

Example 2
Verify that
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$ is an orthogonal set.
Find an orthonormal set.

Orthogonality implies linearly independent

Theorem 3

If $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ is an orthogonal set, then S is linearly independent.

Definition 4

A basis consisting of orthogonal vectors is called **orthogonal basis**. Similarly, a basis consisting of orthonormal vectors is called **orthonormal basis**.

Relative coordinates to orthonormal basis

Theorem 5 (a) If $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ is an orthogonal basis then $\mathbf{u} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$ with $c_i = \frac{\langle \mathbf{u}, \mathbf{v}_i \rangle}{||\mathbf{v}_i||^2}$.

(b) In case S is orthonormal basis, then $c_i = \langle \mathbf{u}, \mathbf{v}_i \rangle$.

Proof: Consider $||\mathbf{u} + \mathbf{v}||^2$.

Example 6

Verify that the vectors $\mathbf{v}_1 = \begin{pmatrix} \frac{-3}{5} \\ \frac{4}{5} \\ 0 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} \frac{4}{5} \\ \frac{3}{5} \\ 0 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ is an orthogonal basis. Then write each of the following vectors as linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 .

(a)
$$\mathbf{u} = \begin{pmatrix} 2\\ 1\\ -2 \end{pmatrix}$$

(b) $\mathbf{u} = \begin{pmatrix} 1\\ 3\\ 4 \end{pmatrix}$
(c) $\mathbf{u} = \begin{pmatrix} \frac{1}{7}\\ -\frac{3}{7}\\ \frac{5}{7} \end{pmatrix}$

Orthogonal Projection

Theorem 7

Let W be a subspace of V, then each vector $\mathbf{v} \in V$ can be written in exactly one way as

$$\mathbf{v} = \mathbf{w} + \hat{\mathbf{w}}$$

where $\mathbf{w} \in W$ and $\hat{w} \in W^{\perp}$.

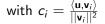
The vector **w** above is called **orthogonal projection of u** on W and denoted by $\mathbf{w} = \operatorname{proj}_W \mathbf{u}$. The vector $\hat{\mathbf{w}}$ above is called **orthogonal projection of u** on W^{\perp} and denoted by $\mathbf{w} = \operatorname{proj}_W^{\perp} \mathbf{u}$.

How to calculate $proj_W \mathbf{u}$

First we find an *orthogonal* basis for W, say $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$. Then,

 $\operatorname{proj}_{W} \mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$

LI JUNI



Calculate the projections

Example 8

Let
$$\mathbf{v}_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} -1\\-1\\-1\\1 \end{pmatrix}$ be a basis for a subspace W . Find $\operatorname{proj}_W \mathbf{u}$,
where $\mathbf{u} = \begin{pmatrix} 1\\2\\0\\-2 \end{pmatrix}$.

Calculate the projections

Example 9

Let
$$\mathbf{v}_1 = \begin{pmatrix} 1\\0\\-3\\-1 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 4\\2\\1\\1 \end{pmatrix}$ be a basis for a subspace W . Find $\operatorname{proj}_W \mathbf{u}$,
where $\mathbf{u} = \begin{pmatrix} 1\\2\\0\\-2 \end{pmatrix}$.

Creating orthogonal basis from any basis

Definition 10

If W is a subspace of an inner vector space V, then the set of all vectors in V that are orthogonal to every vector in W is called the **orthogonal** complement of W and is denoted by W^{\perp} .

$$W^{\perp} := \{ \hat{w} \in V \mid \langle \hat{w}, w
angle = 0, ext{ for all } w \in W \}$$

Theorem 11

Row space and null space are orthogonal

Example 12

Let $W = \text{span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ where,

$$\mathbf{w}_1 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
, $\mathbf{w}_2 = \begin{pmatrix} -1 \\ -4 \\ 2 \end{pmatrix}$, $\mathbf{w}_3 = \begin{pmatrix} 4 \\ -5 \\ 13 \end{pmatrix}$

Row space and null space are orthogonal

Example 13

Let $W = \text{span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ where,

$$\mathbf{w}_1 = \begin{pmatrix} 3\\0\\1\\-2 \end{pmatrix}, \mathbf{w}_2 = \begin{pmatrix} -1\\-2\\-2\\1 \end{pmatrix}, \mathbf{w}_3 = \begin{pmatrix} 4\\2\\3\\-3 \end{pmatrix}$$

