Section 6.3
 Orthogonal and orthonormal basis

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:
(1) Orthogonal and orthonormal basis.
(2) Coordinates relatives to orthonormal basis.
(3) Orthogonal Projection.
(9) The Gram-Schmidt Process.

Normalizing Procedure

Goal: To create a unit vector v^{\prime} from a given vector v.

$$
v^{\prime}=\frac{1}{\|v\|} v
$$

Check that v^{\prime} indeed is a unit vector!

Orthogonal Set

Definition 1

A set of vectors $\left\{\mathbf{v}_{1} \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is called orthogonal set if $\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=\mathbf{0}$, for all $i \neq j$.
A set if called orthonormal basis if it is orthogonal and each vector is a unit vector.

Example 2

Verify that $\mathbf{v}_{1}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}3 \\ 3 \\ 0\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)$ is an orthogonal set.
Find an orthonormal set.

Orthogonality implies linearly independent

Theorem 3
If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is an orthogonal set, then S is linearly independent.

Definition 4

A basis consisting of orthogonal vectors is called orthogonal basis. Similarly, a basis consisting of orthonormal vectors is called orthonormal basis.

Relative coordinates to orthonormal basis

Theorem 5
(a) If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is an orthogonal basis then

$$
\mathbf{u}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}
$$

with $c_{i}=\frac{\left\langle\mathbf{u}_{i} \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}}$.
(b) In case S is orthonormal basis, then $c_{i}=\left\langle\mathbf{u}, \mathbf{v}_{i}\right\rangle$.

Proof: Consider $\|\mathbf{u}+\mathbf{v}\|^{2}$.

Example 6

Verify that the vectors $\mathbf{v}_{1}=\left(\begin{array}{c}\frac{-3}{5} \\ \frac{4}{5} \\ 0\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}\frac{4}{5} \\ \frac{3}{5} \\ 0\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ is an orthogonal basis. Then write each of the following vectors as linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
(a) $\mathbf{u}=\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)$
(b) $\mathbf{u}=\left(\begin{array}{l}1 \\ 3 \\ 4\end{array}\right)$
(c) $\mathbf{u}=\left(\begin{array}{c}\frac{1}{7} \\ \frac{-3}{7} \\ \frac{5}{7}\end{array}\right)$

Orthogonal Projection

Theorem 7
Let W be a subspace of V, then each vector $\mathbf{v} \in V$ can be written in exactly one way as

$$
\mathbf{v}=\mathbf{w}+\hat{\mathbf{w}}
$$

where $\mathbf{w} \in W$ and $\hat{w} \in W^{\perp}$.

The vector \mathbf{w} above is called orthogonal projection of \mathbf{u} on W and denoted by $\mathbf{w}=\operatorname{proj}_{W} \mathbf{u}$. The vector $\hat{\mathbf{w}}$ above is called orthogonal projection of \mathbf{u} on W^{\perp} and denoted by $\mathbf{w}=\operatorname{proj} \frac{\perp}{W} \mathbf{u}$.

How to calculate $\operatorname{proj}_{w} \mathbf{u}$

First we find an orthogonal basis for W, say $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$. Then,

$$
\operatorname{proj}_{W} \mathbf{u}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

with $c_{i}=\frac{\left\langle\mathbf{u}_{1}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}}$

Calculate the projections

Example 8
Let $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}-1 \\ -1 \\ -1 \\ 1\end{array}\right)$ be a basis for a subspace W. Find $\operatorname{proj}_{W} \mathbf{u}$,
where $\mathbf{u}=\left(\begin{array}{c}1 \\ 2 \\ 0 \\ -2\end{array}\right)$.

Calculate the projections

Example 9
Let $\mathbf{v}_{1}=\left(\begin{array}{c}1 \\ 0 \\ -3 \\ -1\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}4 \\ 2 \\ 1 \\ 1\end{array}\right)$ be a basis for a subspace W. Find $\operatorname{proj}_{W} \mathbf{u}$,
where $\mathbf{u}=\left(\begin{array}{c}1 \\ 2 \\ 0 \\ -2\end{array}\right)$.

Creating orthogonal basis from any basis

Definition 10

If W is a subspace of an inner vector space V, then the set of all vectors in V that are orthogonal to every vector in W is called the orthogonal complement of W and is denoted by W^{\perp}.

$$
W^{\perp}:=\{\hat{w} \in V \mid\langle\hat{w}, w\rangle=0, \text { for all } w \in W\}
$$

Theorem 11
(1) W^{\perp} is a subspace of W.
(2) $W \cap W^{\perp}=\{\mathbf{0}\}$
(3) $\left(W^{\perp}\right)^{\perp}$

Row space and null space are orthogonal

Example 12

Let $W=\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ where,

$$
\mathbf{w}_{1}=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right), \mathbf{w}_{2}=\left(\begin{array}{c}
-1 \\
-4 \\
2
\end{array}\right), \mathbf{w}_{3}=\left(\begin{array}{c}
4 \\
-5 \\
13
\end{array}\right)
$$

Row space and null space are orthogonal

Example 13

Let $W=\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ where,

$$
\mathbf{w}_{1}=\left(\begin{array}{c}
3 \\
0 \\
1 \\
-2
\end{array}\right), \mathbf{w}_{2}=\left(\begin{array}{c}
-1 \\
-2 \\
-2 \\
1
\end{array}\right), \mathbf{w}_{3}=\left(\begin{array}{c}
4 \\
2 \\
3 \\
-3
\end{array}\right)
$$

