Section 8.1 Linear Transformation Part 1: Definition and Examples

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:

- Define Linear Transformations.
- 2 Examples of Linear Transformations.
- Finding the linear transformation from a basis.
- Wernel and Range of a linear transformations.
- Properties and of Kernel and Images.
- Rank and Nullity of a linear transformation.

Definition 1

A **linear transformation** is a function $T: V \to W$ with

- 2 $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$. (Additive Property)

In the special case, where V=W, the linear transformation \mathcal{T} is called **linear operator**.

Define a mapping $\mathcal{T}:\mathbb{R}^2 o \mathbb{R}^2$ by

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \left(\begin{pmatrix} 2x - y \\ x + 3y \end{pmatrix}\right)$$

- (a) Find the image of e_1 , e_2 under T.
- (b) Give a description of all vectors in \mathbb{R}^2 that are mapped to the zero vector.
- (c) Show that the mapping is a linear operator.

Simple Consequences from the definition

$$T(k_1\mathbf{v}_1 + k_2\mathbf{v}_2) = T(k_1\mathbf{v}_1) + T(k_2\mathbf{v}_2)$$

= $k_1T(\mathbf{v}_1) + k_2T(\mathbf{v}_2)$

In general,

In general,
$$T(k_1\mathbf{v}_1+k_2\mathbf{v}_2+\cdots+k_n\mathbf{v}_n)=k_1T(\mathbf{v}_1)+k_2T(\mathbf{v}_2)+\cdots+k_nT(\mathbf{v}_n)$$

•

$$egin{aligned} \mathcal{T}(\mathbf{0}) &= \mathcal{T}(\mathbf{0}+\mathbf{0}) \ \mathcal{T}(\mathbf{0}) &= \mathcal{T}(\mathbf{0}) + \mathcal{T}(\mathbf{0}) \ \mathbf{0}_W &= \mathcal{T}(\mathbf{0}) \end{aligned}$$
 Zero goes to zero

$$T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v})$$

Matrix Transformation

Example 3

Let A be any $m \times n$ matrix. Define the linear transformation $T_A: \mathbb{R}^n \to \mathbb{R}^m$ by

$$T_A(\mathbf{x}) = A\mathbf{x}$$

Let
$$A = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 3 & 2 \end{pmatrix}$$
. Find the image of the matrix transformation of $\begin{pmatrix} 1 \end{pmatrix}$

(a)
$$\mathbf{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 (b) $\mathbf{v} = \begin{pmatrix} 7 \\ -1 \\ 5 \end{pmatrix}$ (c) $\mathbf{u} + \mathbf{v}$

Zero Transformation

Example 5

Let V be any vector space. Define the linear transformation $\mathcal{T}:V o W$ by

$$T(\mathbf{x}) = \mathbf{0}_W$$

Identity Operator

Example 6

Let V be any vector space. Define the linear transformation (operator)

 $T:V \to V$ by

$$T(\mathbf{x}) = \mathbf{x}$$

Dilation and Contraction Operators

Example 7

Let V be any vector space. Define the linear operator $T_k:V\to V$ by

$$T_k(\mathbf{x}) = k\mathbf{x}$$

If 0 < k < 1, then T_k is called the **contraction** of V with factor k and if k > 1, it is called the **dilation** of V with factor k.

A Linear Transformation from \mathbb{P}_n to \mathbb{P}_{n+1}

Example 8

Define the linear operator $T:\mathbb{P}_n o\mathbb{P}_n$ by

$$T(p(X)) = XP(X)$$

$$T(c_0 + c_1X + c_2X^2 + \dots + c_nX^n) = c_0X + c_1X^2 + c_2X^3 + \dots + c_nX^{n+1}$$

Define a mapping $T:\mathbb{P}_2 o\mathbb{P}_2$ by

$$T(p(X)) = p''(X) - 2p'(X) + p(X)$$

- (a) Find the image of $\mathbf{u} = X^2 3X + 1$, $\mathbf{v} = -X 1$, $\mathbf{u} + \mathbf{v}$ under T.
- (b) Is the mapping T a linear operator.

Linear Transformation of the Matrices

Example 10

Define the linear transformation $T: \mathsf{Mat}(\mathit{m}, \mathit{n}, \mathbb{R}) o \mathsf{Mat}(\mathit{n}, \mathit{m}, \mathbb{R})$ by

$$T(A) = A^T$$

Linear Transformation of the Matrices

Example 11

Define the function $T: \mathsf{Mat}(m, n, \mathbb{R}) \to \mathbb{R}$ by

$$T(A) = \det(A)$$

Is T a linear transformation?

Evaluation Transformation

Example 12

Let c_1, c_2, \ldots, c_n be real numbers. Define the linear transformation $\mathcal{T}: \mathsf{Maps}(\mathbb{R},\mathbb{R}) \to \mathbb{R}^n$ by

$$T(f) = (f(c_1), f(c_2), \dots, f(c_n))$$

Define a mapping $\mathcal{T}:\mathbb{R}^2 o \mathbb{R}^3$ by

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \left(\begin{pmatrix} \cos x \\ \sin x \\ \sin y \end{pmatrix}\right)$$

(a) Show that the mapping is a linear operator.

2- Finding Linear Transformation from the image of a basis

Example 14

Consider the basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ of \mathbb{R}^2 , where

$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 , $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$

and let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation such that

$$T(\mathbf{v}_1) = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad T(\mathbf{v}_2) = \begin{pmatrix} 0 \\ 3 \\ 5 \end{pmatrix}$$

Find a formula for $T(x_1,x_2)$ in general and use it to find T(2,-3) and T(4,-1).

Finding Linear Transformation from the image of a basis

Example 15

Consider the basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ of \mathbb{R}^3 , where

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

and let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation such that

$$\mathcal{T}(\textbf{v}_1) = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}, \quad \mathcal{T}(\textbf{v}_2) = \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}, \quad \mathcal{T}(\textbf{v}_3) = \begin{pmatrix} 1 \\ 5 \\ -1 \end{pmatrix}.$$

Find a formula for $T(x_1, x_2, x_3)$ in general and use it to find T(2, 4, -1) and T(4, 3, 4).

Definition 16

If $T:V\to W$ be a linear transformation. The set of all vectors in V that T maps into zero is called the **kernel** of T and denoted by $\ker(T)$.the set of all vectors in W that are images under T of at least one vector in V is called the **range** of T and is denoted by R(T).

$$\ker(\mathcal{T}) := \{\mathbf{v} \in V \,|\, \mathcal{T}(\mathbf{v}) = \mathbf{0}_W\}$$

$$R(T) := \{ \mathbf{w} \in W \mid T(\mathbf{v}) = \mathbf{w}, \text{ for some } \mathbf{v} \in V \}$$

Matrix Transformation

Example 17

Let A be any $m \times n$ matrix. Define the linear transformation

 $T_A: \mathbb{R}^n \to \mathbb{R}^m$ by

$$T_A(\mathbf{x}) = A\mathbf{x}$$

Zero Transformation

Example 18

Let V be any vector space. Define the linear transformation $\mathcal{T}:V\to W$ by

$$T(\mathbf{x}) = \mathbf{0}_W$$

Identity Operator

Example 19

Let V be any vector space. Define the linear transformation (operator)

$$T:V\to V$$
 by

$$T(\mathbf{x}) = \mathbf{x}$$

Dilation and Contraction Operators

Example 20

Let V be any vector space. Define the linear operator $T_k:V\to V$ by

$$T_k(\mathbf{x}) = k\mathbf{x}$$

If 0 < k < 1, then T_k is called the **contraction** of V with factor k and if k > 1, it is called the **dilation** of V with factor k.

A Linear Transformation from \mathbb{P}_n to \mathbb{P}_{n+1}

Example 21

Define the linear operator $T: \mathbb{P}_n \to \mathbb{P}_n$ by

$$T(p(X)) = XP(X)$$

$$T(c_0 + c_1X + c_2X^2 + \dots + c_nX^n) = c_0X + c_1X^2 + c_2X^3 + \dots + c_nX^{n+1}$$

Theorem 22

Let $T: V \to W$ be a linear transformation. ker(T) and R(A) are both subspaces of V and W.

- **1** Dimension of the ker(T) is called the **nullity** of T.
- ② Dimension of the R(A) is called the **rank** of T.

Theorem 23

Dimension Theorem Let $T: V \to W$ be a linear transformation, then

$$rank(T) + Nullity(T) = dim(V) = n$$

Let $T: \mathbb{R}^2 o \mathbb{R}^2$ be the linear transformation given by

$$T(x, y) = (x - 3y, -2x + 6y)$$

Which of the following vectors are in R(T)? (1,-2), (3,1), (-2,4) Which of the following vectors are in ker(T)? (1,-3), (3,1), (-6,-2) Find a basis for the ker(T)? Find a basis for the R(T)? Verify the formula in the dimension theorem?

Let $T: \mathbb{P}_2 \to \mathbb{P}_3$ be the linear transformation given by

$$T(p(X)) = (X+1)p(X)$$

Which of the following vectors are in R(T)? $X + X^2$, 1 + X, $3 - X^2$ Which of the following vectors are in $\ker(T)$? X^2 , 0, X + 1 Find a basis for the $\ker(T)$? Find a basis for the R(T)? Verify the formula in the dimension theorem?