Section 8.1
 Linear Transformation
 Part 2: Null and Range of a linear transformation

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra
(1) Define Linear Transformations.
(2) Examples of Linear Transformations.
(3) Finding the linear transformation from a basis.
(9) Kernel and Range of a linear transformations.
(5) Properties and of Kernel and Images.
(6) Rank and Nullity of a linear transformation.

Definition 1

If $T: V \rightarrow W$ be a linear transformation. The set of all vectors in V that T maps into zero is called the kernel of T and denoted by $\operatorname{ker}(T)$.the set of all vectors in W that are images under T of at least one vector in V is called the range of T and is denoted by $R(T)$.

$$
\begin{gathered}
\operatorname{ker}(T):=\left\{\mathbf{v} \in V \mid T(\mathbf{v})=\mathbf{0}_{W}\right\} \\
R(T):=\{\mathbf{w} \in W \mid T(\mathbf{v})=\mathbf{w}, \text { for some } \mathbf{v} \in V\}
\end{gathered}
$$

Example 2

Define a mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
T\left(\binom{x}{y}\right)=\left(\binom{3 x+y}{y}\right)
$$

(a) Find a basis for the null space and its dimension.
(b) Give a description of the range of T.
(c) Find a basis for the range space and its dimension.

Example 3

Define a mapping $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ by

$$
T\left(\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)\right)=\left(\left(\begin{array}{c}
x+y-z+w \\
2 x+y+4 z+w \\
3 x+y+9 z
\end{array}\right)\right)
$$

(a) Find a basis for the null space and its dimension.
(b) Give a description of the range of T.
(c) Find a basis for the range space and its dimension.

Example 4

Define a mapping $T: \mathbb{P}_{2} \rightarrow \mathbb{R}$ by

$$
T(p(X))=(P(0))
$$

(a) Find a basis for the null space and its dimension.
(b) Give a description of the range of T.
(c) Find a basis for the range space and its dimension.

Example 5

Define a mapping $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{3}$ by

$$
T(p(X))=\left(P^{\prime \prime}(X)+p^{\prime}(X)+p(0)\right)
$$

(a) Find a basis for the null space and its dimension.
(b) Give a description of the range of T.
(c) Find a basis for the range space and its dimension.

Matrix Transformation

Example 6

Let A be any $m \times n$ matrix. Define the linear transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by

$$
T_{A}(\mathbf{x})=A \mathbf{x}
$$

$\operatorname{ker}\left(T_{A}\right)$ is the Null space of A while $R\left(T_{A}\right)$ is the Column space of A.

Zero Transformation

Example 7

Let V be any vector space. Define the linear transformation $T: V \rightarrow W$ by

$$
T(\mathbf{x})=\mathbf{0}_{W}
$$

Identity Operator

Example 8

Let V be any vector space. Define the linear transformation (operator) $T: V \rightarrow V$ by

$$
T(\mathbf{x})=\mathbf{x}
$$

Dilation and Contraction Operators

Example 9

Let V be any vector space. Define the linear operator $T_{k}: V \rightarrow V$ by

$$
T_{k}(\mathbf{x})=k \mathbf{x}
$$

If $0<k<1$, then T_{k} is called the contraction of V with factor k and if $k>1$, it is called the dilation of V with factor k.

A Linear Transformation from \mathbb{P}_{n} to \mathbb{P}_{n+1}

Example 10

Define the linear operator $T: \mathbb{P}_{n} \rightarrow \mathbb{P}_{n}$ by

$$
T(p(X))=X P(X)
$$

$$
T\left(c_{0}+c_{1} X+c_{2} X^{2}+\cdots+c_{n} X^{n}\right)=c_{0} X+c_{1} X^{2}+c_{2} X^{3}+\cdots+c_{n} X^{n+1}
$$

Theorem 11
Let $T: V \rightarrow W$ be a linear transformation. $\operatorname{ker}(T)$ and $R(A)$ are both subspaces of V and W.
(1) Dimension of the $\operatorname{ker}(T)$ is called the nullity of T.
(2) Dimension of the $R(A)$ is called the rank of T.

Theorem 12

Dimension Theorem Let $T: V \rightarrow W$ be a linear transformation, then

$$
\operatorname{rank}(T)+\operatorname{Nullity}(T)=\operatorname{dim}(V)=n
$$

Example 13

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by

$$
T(x, y)=(x-3 y,-2 x+6 y)
$$

Which of the following vectors are in $R(T)$?
$(1,-2),(3,1),(-2,4)$ Which of the following vectors are in $\operatorname{ker}(T)$?
$(1,-3),(3,1),(-6,-2)$ Find a basis for the $\operatorname{ker}(T)$? Find a basis for the $R(T)$? Verify the formula in the dimension theorem?

Example 14

Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{3}$ be the linear transformation given by

$$
T(p(X))=(X+1) p(X)
$$

Which of the following vectors are in $R(T)$?
$X+X^{2}, 1+X, 3-X^{2}$ Which of the following vectors are in $\operatorname{ker}(T)$? $X^{2}, 0, X+1$ Find a basis for the $\operatorname{ker}(T)$? Find a basis for the $R(T)$? Verify the formula in the dimension theorem?

