University of Bahrain
Department of Mathematics
MATHS122: Calculus II
Spring 2016
Dr. Nasser Metwally
Dr. Abdulla Eid

Test 1

Student's Name: \qquad ID: \qquad

Section: \qquad Serial Number: \qquad

- Do not open the exam until you are instructed to do so.
- Show sufficient work to justify each answer.
- Calculators are allowed but cell phones are not allowed during the exam.
- Exchange of any material such as calculator, pen, eraser is not allowed.
- No questions are allowed.
- You have 1 hour to finish this exam. You can leave only after 30 minutes of the exam.
- There are ?? questions and ?? pages in this exam.

$$
\text { Run } \mathrm{ET}_{\mathrm{E}} \mathrm{X} \text { again to produce the table }
$$

Question 1 (6 points)
Consider the region enclosed by the curves $y=\sqrt{x}, y=1$, and $x=0$.
(a) Sketch the region above.

Solution:

(b) Find the volume of the solid generated by revolving the region about the line $x=4$.

Solution: If we place a vertical rectangle in the region of a distance x from the y-axis, we have

$$
\begin{aligned}
\text { radius } & =\text { distance between the rectangle and the axis of revolution }=4-x \\
\text { height } & =\text { Top }- \text { Bottom }=1-\sqrt{x} \\
\text { thickness } & =d x
\end{aligned}
$$

Thus by the cylindrical shell method we have

$$
\begin{aligned}
V & =2 \pi \int(\text { radius })(\text { height })(\text { thickness }) \\
V & =2 \pi \int_{0}^{1}(4-x)(1-\sqrt{x}) d x \\
& =2 \pi \int_{0}^{1} 4-4 x^{\frac{1}{2}}-x+x^{\frac{3}{2}} d x \\
& =2 \pi\left[4 x-\frac{8}{3} x^{\frac{3}{2}}-\frac{1}{2} x^{2}+\frac{2}{5} x^{\frac{5}{2}}\right]_{0}^{1} \\
& =\frac{37}{15} \pi
\end{aligned}
$$

Question 2 (4 points)
Find the length of the curve

$$
y=24 x^{\frac{3}{2}}, \quad 0 \leqslant x \leqslant 2
$$

Solution:

$$
\begin{aligned}
L & =\int_{0}^{2} \sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
& =\int_{0}^{2} \sqrt{1+\left(36 x^{\frac{1}{2}}\right)^{2}} d x \\
& =\int_{0}^{2} \sqrt{1+1296 x} d x \\
& =\left[\frac{1}{1296} \cdot \frac{2}{3}(1+1296 x)^{\frac{3}{2}}\right]_{0}^{2} \\
& =\frac{1}{1944}(2593)^{\frac{3}{2}}-\frac{1}{1944} \\
& \sim 67.92
\end{aligned}
$$

Question 3 (10 points)
(i) Use l'hopital's rule to find the following limits:
(a) $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}} & \stackrel{(\mathrm{H})}{=} \lim _{x \rightarrow 0} \frac{\cos x-1}{3 x^{2}} \\
& \stackrel{(\mathrm{H})}{=} \lim _{x \rightarrow 0} \frac{-\sin x}{6 x} \\
& \stackrel{(\mathrm{H})}{=} \lim _{x \rightarrow 0} \frac{-\cos x}{6} \\
& =\frac{-1}{6}
\end{aligned}
$$

(b) $\lim _{x \rightarrow 0^{+}} x(\ln x)^{2}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x(\ln x)^{2} & =\lim _{x \rightarrow 0^{+}} \frac{(\ln x)^{2}}{\frac{1}{x}} \\
& \stackrel{(\mathrm{H})}{=} \lim _{x \rightarrow 0^{+}} \frac{2(\ln x) \frac{1}{x}}{\frac{-1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}}-2 x(\ln x) \\
& =\lim _{x \rightarrow 0^{+}} \frac{-2(\ln x)}{\frac{1}{x}} \\
& \stackrel{(\mathrm{H})}{=} \lim _{x \rightarrow 0^{+}} \frac{-2 \frac{1}{x}}{\frac{-1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}}-2 x \\
& =0
\end{aligned}
$$

(ii) Evaluate the following integrals:
(a) $\int(6 x+5) \cos x d x$

Solution: We use integration by parts. Let

$$
\begin{array}{rl}
u=6 x+5 & d v=\cos x d x \\
d u=6 d x & v=\sin x \\
\int(6 x+5) \cos x d x=u v-\int v d u \\
& =(6 x+5) \sin x-\int 6 \sin x d x \\
& =(6 x+5) \sin x+6 \cos x+C
\end{array}
$$

(b) $\int_{1}^{e} 25 x^{4} \ln x d x$

Solution: We use integration by parts. Let

$$
\begin{array}{rl}
u=\ln x & d v=25 x^{4} d x \\
d u=\frac{1}{x} d x & v=5 x^{5} \\
\int_{1}^{e} 25 x^{4} \ln x d x=u v-\int v d u \\
& =\left[5 x^{5} \ln x\right]_{1}^{e}-\int_{1}^{e} 5 x^{5} \frac{1}{x} d x \\
& =\left[5 x^{5} \ln x\right]_{1}^{e}-\int_{1}^{e} 5 x^{4} d x \\
& =\left[5 x^{5} \ln x\right]_{1}^{e}-\left[x^{5}\right]_{1}^{e} \\
& =5 e^{5}-e^{5}+1 \\
& =4 e^{5}+1
\end{array}
$$

