University of Bahrain
Department of Mathematics
MATHS122: Calculus II
Spring 2016
Dr. Abdulla Eid

## Worksheet 1: Volume

Students' Name: $\qquad$

For each of the following, set-up an integral that compute the volume of the solid generated by revolving the enclosed region about the given axis of revolution. (you can use any method you would like).

1. $y=3 x-x^{2}, y=0$; about $x$-axis.
2. The region in the first quadrant bounded above by the curve $y=x^{2}$, below by the $x$-axis, and on the right by the line $x=1$; about $x=-1$.
3. $y=2 x-1, y^{2}=x$, and $x=0$; about $y$-axis
4. $y=x^{3}, y=8, x=0$;
5. about $y$-axis.
6. about $x$-axis.
7. about $x=-1$.
8. about $x=4$.
9. about $y=-2$.
10. about $y=7$.
11. $y=x^{2}, y=-x^{4}, x=1$; about $y$-axis.
12. $y=e^{\frac{x}{2}}, y=1, x=\ln 3$; about $x$-axis.
13. $x=(y-1)^{2}, x-y=1$; about $x=-1$.
14. (a) Cavalieri's principle states that if a family of parallel planes gives equal cross-sectional areas for two solids $S_{1}$ and $S_{2}$, then the volumes of $S_{1}$ and $S_{2}$ are equal. Prove this principle. (Hint: Use the first definition of the volume in Section 6.1).
(b) Use Cavalieri's principle to find the volume of the oblique circular cylinder of radius $r$ and height $h$.
15. Derive the formula to find the arc-length of any curve $y=f(x)$
