University of Bahrain
Department of Mathematics
MATHS122: Calculus II
Spring 2016
Dr. Abdulla Eid

Worksheet 10: Convergence Tests

Students' Name: \qquad

1. Determine whether the following series converge or diverges. Write the name of the test that was used.
2. $1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}+\frac{1}{4 \sqrt{4}}+\ldots$
3. $\sum_{n=2}^{\infty} \frac{\sqrt{n}+4}{n^{2}}$
4. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$
5. $\sum_{n=0}^{\infty} \frac{n \sin ^{2} n}{1+n^{3}}$
6. $\sum_{n=3}^{\infty} \frac{\tan ^{-1} n}{n^{2}}$
7. $\sum_{n=2}^{\infty}\left(1+\frac{1}{n}\right)^{n} e^{-n}$
8. $\sum_{n=1}^{\infty} \sin \left(1+\frac{1}{n}\right)$
9. $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
10. $\sum_{n=2}^{\infty}\left(\frac{2 n}{n+1}\right)^{5 n}$
11. $\sum_{n=1}^{\infty} \frac{(2 n)!}{(n!)^{2}}$
12. What is the domain of the Riemann-zeta function ζ which is defined by

$$
\zeta(x)=\sum_{n=1}^{\infty} \frac{1}{n^{x}}
$$

2. Find the value of p such that the series

$$
\sum_{n=2}^{\infty} \frac{\ln n}{n^{p}}
$$

converges.
(Hint: Use the integral test).
3. State and prove the integral test for series.
4. Prove the following properties of series given that $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ converge, $\sum_{n=1}^{\infty} d_{n}$ be any series, and c is a real number:

1. $\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$
2. $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$.
3. $\sum_{n=1}^{\infty} d_{n}$ and $\sum_{n=k}^{\infty} d_{n}$ have the same behavior (both converge or diverge).
4. Give an example of two divergent series $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ such that their sum $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ converges.
5. Consider the decimal number $\alpha=0 . d_{1} d_{2} d_{3} \ldots$.
6. What should be the conditions on $d_{1}, d_{2}, d_{3}, \ldots$?
7. Write α as an infinite sum.
8. Prove that your series in (2) indeed converges for all numbers.
9. If $a_{n} \geqslant 0$ for all n and $\sum a_{n}$ converges. Prove that $\sum a_{n}^{2}$ converges.
