University of Bahrain Department of Mathematics MATHS122: Calculus II Spring 2016 Dr. Abdulla Eid

Worksheet 10: Convergence Tests

Students' Name: ____

1. Determine whether the following series converge or diverges. Write the name of the test that was used.

1.
$$1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + \dots$$

$$2. \sum_{n=2}^{\infty} \frac{\sqrt{n+4}}{n^2}$$

$$3. \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

$$4. \sum_{n=0}^{\infty} \frac{n \sin^2 n}{1+n^3}$$

5.
$$\sum_{n=3}^{\infty} \frac{tan^{-1}n}{n^2}$$

$$6. \sum_{n=2}^{\infty} \left(1 + \frac{1}{n}\right)^n e^{-n}$$

7.
$$\sum_{n=1}^{\infty} \sin\left(1 + \frac{1}{n}\right)$$

8.
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

9.
$$\sum_{n=2}^{\infty} \left(\frac{2n}{n+1}\right)^{5n}$$

10.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

11. What is the domain of the Riemann–zeta function ζ which is defined by

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$$

2. Find the value of *p* such that the series

$$\sum_{n=2}^{\infty} \frac{\ln n}{n^p}$$

converges. (Hint: Use the integral test). 3. State and prove the integral test for series.

4. Prove the following properties of series given that $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ converge, $\sum_{n=1}^{\infty} d_n$ be any series, and *c* is a real number:

1.
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

2. $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$.

- 3. $\sum_{n=1}^{\infty} d_n$ and $\sum_{n=k}^{\infty} d_n$ have the same behavior (both converge or diverge).
- 4. Give an example of two divergent series $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ such that their sum $\sum_{n=1}^{\infty} (a_n + b_n)$ converges.

- 5. Consider the decimal number $\alpha = 0.d_1d_2d_3...$
 - 1. What should be the conditions on d_1, d_2, d_3, \ldots ?

2. Write α as an infinite sum.

3. Prove that your series in (2) indeed converges for all numbers.

6. If $a_n \ge 0$ for all n and $\sum a_n$ converges. Prove that $\sum a_n^2$ converges.