University of Bahrain
Department of Mathematics
MATHS122: Calculus II
Spring 2016
Dr. Abdulla Eid

Worksheet 3: Integration by parts and Trig Substitution
Students' Name: \qquad

Find the following integrals:

1. $\int(5 x-2) e^{x} d x$.
2. $\int \sin ^{-1} x d x$.
3. $\int \frac{\ln x}{\sqrt{x}} d x$.
4. $\int_{\text {(Hint: Use }} \cos \sqrt{x} d x$.
(Hint: Use substitution first)
5. $\int e^{2 x} \cos x d x$.
6. Show that $\int(\ln x)^{n} d x=x(\ln x)^{n}-n \int(\ln x)^{n-1} d x$.
7. $\int \frac{\cos ^{5} x}{\sqrt{\sin x}} d x$.
8. Without using $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
9. Use integration by parts to reduce $\int \sin ^{2} x d x$ into an integral involving $\int \cos ^{2} x d x$.
10. Use $\cos ^{2} x=1-\sin ^{2} x$ to find $\int \sin ^{2} x d x$.
11. Compare your answer with Exercise 3 in Section 8.0.
12. In this exercise, we would like to show that the volume we get from rotating a region around an axis is the same if we use either the cylindrical shells (Section 6.2) or cross-section method (Section 6.1). Consider a one-to-one function f such that $f(0)=0$ and $f(b)=d$ with inverse $x=g(y)$. Assume that the region bounded by the function $f(x), y=0$, and $x=b$ is revolved around the y-axis.
13. Find the volume of the generated solid using the cylindrical shell method.
14. Find the volume of the generated solid using the cross-section method.
15. Use integration by parts to convert the integral in (2) into the integral in (1) or vice versa.
