University of Bahrain
Department of Mathematics
MATHS101: Calculus I
Fall 2016

## Test 1

Student's Name: $\qquad$ ID: $\qquad$

Section: $\qquad$ Serial Number: $\qquad$

- Do not open the exam until you are instructed to do so.
- Calculators are allowed but cell phones are not allowed during the exam.
- Exchange of any material such as calculator, pen, eraser is not allowed.
- No questions are allowed.
- You have 1 hour to finish this exam. You can leave only after 30 minutes of the exam.
- There is 1 question consists of 17 multiple choice questions and 5 pages in this exam.
- The multiple choice question should be filled in the bubble sheet and will be graded by the computer.

| Question | Points | Score |
| :---: | :---: | :---: |
| 1 | 50 |  |
| Total: | 50 |  |

## Exam Version: B

Question 1 (50 points)
Choose the correct answer and shade the answer in the answer sheet for each of the following:
(1) If

$$
f(x)= \begin{cases}3, & x \leqslant 3 \\ 2 x-a, & x>3\end{cases}
$$

is a continuous function, then $a=$
A. 1
B. 2
C. 7
D. 4
E. -1
F. 3
(2) $\lim _{x \rightarrow 1} \frac{5-5 x}{1-x^{4}}=$
A. $-\infty$
B. $-\frac{5}{4}$
C. $\frac{5}{4}$
D. 0
E. $\infty$
F. $\frac{4}{5}$
(3) $\lim _{x \rightarrow 0^{-}} \frac{x}{\sqrt{x^{2}}}=$
A. -1
B. 1
C. $-\infty$
D. 2
E. 0
F. $\infty$
(4) Find $\lim _{x \rightarrow-3} \frac{x^{2}+x-6}{x+3}=$
A. $\infty$
B. 5
C. 0
D. -1
E. -5
F. 1
(5) $\lim _{x \rightarrow 0} \frac{x^{3}-3 x^{2}}{x^{2}}=$
A. 1
B. -3
C. -1
D. 7
E. 0
F. 3
(6) What is the largest interval where the function $f(x)=\sqrt{4 x-12}$ continuous?
A. $[3, \infty)$
B. $(3, \infty)$
C. $(\infty, 3)$
D. $[12, \infty)$
E. $[-3, \infty)$
F. $(-\infty, 3]$
(7) $\lim _{x \rightarrow 1^{-}} \frac{4 x-4}{x^{2}-1}=$
A. -3
B. -2
C. -1
D. 0
E. 2
F. 1
(8) If

$$
f(x)= \begin{cases}x^{2}+3 x+2, & x \leqslant 2 \\ 2 x, & x>2\end{cases}
$$

, then $\lim _{x \rightarrow 2} f(x)=$
A. 12
B. 4
C. Does not exist
D. 2
E. 3
F. -4
(9) The function $f(x)=\frac{x-1}{2 x-x^{2}}$ is discontinuous at
A. 0 and 2 only
B. 0 only
C. 1 only
D. 0,1 , and 2 only
E. 2 only
F. None of the above
(10) If $\frac{x^{2}+x+2}{2 x+2} \leqslant f(x) \leqslant \frac{x^{2}+4 x-4}{x}$, then $\lim _{x \rightarrow 1} f(x)=$
A. 4
B. 2
C. -3
D. -2
E. None of the above
F. 1
(11) $\lim _{x \rightarrow 3^{-}} \frac{x^{2}-9}{|x-3|}=$
A. 4
B. 0
C. 3
D. -6
E. -3
F. Does not exist
(12) If $\lim _{x \rightarrow 5} f(x)=21$, then $\lim _{x \rightarrow 5} \sqrt{f(x)+4}$
A. 5
B. 2
C. 4
D. -5
E. $\frac{1}{5}$
F. Does not exist
(13) $\lim _{h \rightarrow 0} \frac{(h-4)^{2}-16}{h}=$
A. -2
B. -8
C. 8
D. 0
E. 2
F. Does not exist
(14) If $\lim _{x \rightarrow 3} \frac{f(x)}{x^{3}}=1$, then $\lim _{x \rightarrow 3} f(x)=$
A. $\frac{1}{27}$
B. 8
C. Does not exist
D. -27
E. $\frac{-1}{27}$
F. 27
(15) $\lim _{x \rightarrow 0^{+}} \frac{x-9}{|x-9|}=$
A. 1
B. -1
C. 9
D. -9
E. 0
F. $\infty$
(16) $\lim _{x \rightarrow 25} \frac{\sqrt{x}-5}{x-25}=$
A. $\frac{1}{10}$
B. $\frac{1}{8}$
C. 10
D. $-\frac{1}{10}$
E. 0
F. $\frac{1}{6}$
(17) If $\lim _{x \rightarrow 3} \frac{f(x)-7}{x-3}=5$, then $\lim _{x \rightarrow 3} f(x)=$
A. 3
B. 5
C. -7
D. -3
E. 7
F. Does not exist

