University of Bahrain Department of Mathematics MATHS312: Abstract Algebra II Spring 2018 Dr. Abdulla Eid

Homework 1: Rings Due on February 22, 2018 Hand in all problems

Name: _____

1. On the set of integers \mathbb{Z} , define the operations

 $a \oplus b := a + b - 1$ and $a \odot b := a + b - ab$

Show that $(\mathbb{Z}, \oplus, \odot)$ is a ring. Does it have a unity? Is it commutative?

2. For a prime *p*, prove that the set $(\mathbb{Z}_p, +_p, \cdot_p)$ is a field. (Show only that every nonzero element has a multiplicative inverse)

3. On the set of natural numbers \mathbb{N} , define the operations

 $a \oplus b := \max(a, b)$ and $a \otimes b := a + b$

Is $(\mathbb{N}, \oplus, \otimes)$ is ring? commutative ring with unity? field?

4. (Important) Consider the set

$$\mathbb{H} := \{a + b\mathbf{i} + c\mathbf{j} + \mathbf{k} \mid a, b, c, d \in \mathbb{R}\}$$

together with the operation

$$-1 \cdot -1 = 1$$
, $i^2 = j^2 = j^2 = -1$, $ij = k$, $jk = i$, $ki = j$, $ji = -j$, $ik = -j$, $kj = -i$

1. Let $w_1 = 1 + i + j - k$, $w_2 = 2 + i - 2j + k$. Find $w_1 + w_2$ and w_1w_2 .

2. Generalize your work above to find $w_1 + w_2$ and w_1w_2 , where $w_1 = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ and $w_2 = a' + b'\mathbf{i} + c'\mathbf{j} + d'\mathbf{k}$. Is the set \mathbb{H} closed under the addition and multiplication?

3. Prove that $(\mathbb{H}, +, \cdot)$ is a division ring, but not a field. The set \mathbb{H} is called the hamiltonian or quarterion ring.