University of Bahrain Department of Mathematics MATHS312: Abstract Algebra II Spring 2018 Dr. Abdulla Eid

Homework 12: Extension Field Due on May 17, 2018

Name: _____

1. Use the proof of Kronecker's Theorem to find an extension field of \mathbb{Z}_2 that contains a zero for $f(X) = X^5 + X^4 + 1$. Is that extension a splitting field for f(X)?

2. Find the splitting field for the following polynomials along with the elements description.

1. $f(X) = X^4 + X^2 + 1 = (X^2 + X + 1)(X^2 - X + 1) \in \mathbb{Q}[X].$

2. $f(X) = X^2 + X + 1 \in \mathbb{Z}_5[Z].$

- 3. Describe the elements in each of the following fields.
 - 1. $\mathbb{Q}(\sqrt{2}, i)$.

2. $\mathbb{Q}(\sqrt{2}, \sqrt{3}, i)$.

3.
$$\mathbb{Q}(\sqrt{2} + \sqrt{-2})$$
.

4. $\mathbb{Q}(\sqrt[n]{a}, \omega)$, where $\omega = e^{\frac{2\pi i}{n}}$.

4. Let $f(X) = 2X + 1 \in \mathbb{Z}_4[X]$. Is there a field extension of \mathbb{Z}_4 which could have a zero for f(X). Does that contradict the conclusion of Kronecker's theorem?

(Hine: if α is root for f(X), what would be $2f(\alpha)$?)