University of Bahrain Department of Mathematics MATHS312: Abstract Algebra II Spring 2018 Dr. Abdulla Eid

Homework 13: Algebraic and Finite Extensions Due on May 24, 2018

Name: _____

1. Show that the following numbers are algebraic over Q.

1. $\sqrt{5} + \sqrt{2}i$

2. $\sqrt{5} + \sqrt[3]{3}$

3. $\sqrt[3]{2}+i$.

4.
$$\sqrt{\frac{1}{2} + \sqrt{5}}$$

- 2. Find the degree and the basis for the following extionsion fields.
 - 1. $\mathbb{Q}(\sqrt[3]{5},\sqrt{5}i)$ over \mathbb{Q} .

2. $\mathbb{Q}(\sqrt{8})$ over $\mathbb{Q}(\sqrt{2})$.

3. $\mathbb{Q}(\sqrt{5} + \sqrt{2})$ over $\mathbb{Q}(\sqrt{5})$.

4. $\mathbb{Q}(\sqrt{3},\sqrt{5},\sqrt{7})$ over \mathbb{Q} .

3. Show that $\mathbb{Q}(\sqrt{3}, \sqrt{7}) = \mathbb{Q}(\sqrt{3} + \sqrt{7})$ and use it to generalize it to the case $\mathbb{Q}(\sqrt{a}, \sqrt{b}) = \mathbb{Q}(\sqrt{a} + \sqrt{b})$ is gcd(a, b) = 1.

4. Show that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) = \mathbb{Q}(\sqrt[6]{2})$