MATHS 311 Homework 4: Zero divisors, units, and Integral domสiebruary 15, 2018

University of Bahrain
Department of Mathematics
MATHS312: Abstract Algebra II
Spring 2018
Dr. Abdulla Eid

Homework 4: Zero divisors, units, and Integral domain Due on March 22, 2018
 Hand in problems 1-7

Name: \qquad

1. Describe the units of $\mathbb{Z}_{4}[i]$.
2. Find all zero divisors in \mathbb{Z}_{30} and $\mathbb{Z}_{5}[i]$.
3. Find the units in the ring in Homework 1, Exercise 1.
4. Let S be a subring of R.
(i) Show by example that the unity 1_{S} need not to be the same as the unity of 1_{R}.
(ii) If R is an integral domain, then $1_{R}=1_{S}$.
5. Is $\mathbb{Z}[\sqrt{D}]$ an integral domain?
6. Let R be a finite commutative ring with unity. Prove that every nonzero element of R is either a unit or a zero-divisor.
(Hint: The proof of Wedderburn's theorem)
7. (Important)

Let R be an integral domain.
(i) If char $(R)=2$, then $(x+y)^{2}=x^{2}+y^{2}$ and that $(x+y)^{2^{n}}=x^{2^{n}}+y^{2^{n}}$.
(i) If $\operatorname{char}(R)=p$, then $(x+y)^{p}=x^{p}+y^{p}$ and that $(x+y)^{p^{n}}=x^{p^{n}}+y^{p^{n}}$. (Hint: Use the fact that $\left.p \left\lvert\,\binom{ p}{k}\right.\right)$
8. Let u be a unit in a commutative ring with unity and $b^{2}=0$. Show that $u+b$ is a unit.

