University of Bahrain Department of Mathematics MATHS312: Abstract Algebra II Spring 2018 Dr. Abdulla Eid

Homework 5: Ideals Due on March 29, 2018 Hand in problems 1–7

Name: _____

1. Let $R = \mathbb{Z}[\sqrt{5}]$. Is the set $I = \{a + b\sqrt{5} \mid a - b \text{ is even }\}$ an ideal of *R*?

2. (a) Let *x* be an element of a commutative ring *R*. Show that the principal ideal generated by *x* is the smallest ideal of *R* that contains *x*.

(b) Conclude that the ideal generated by x is the intersection of all ideals that contain x.

(c) Let $x_1, x_2, ..., x_n$ be elements of a commutative ring *R*. Show that the ideal generated by $x_1, x_2, ..., x_n$ is the smallest ideal contain $x_1, x_2, ..., x_n$.

(d) Conclude that the ideal generated by $x_1, x_2, ..., x_n$ is the intersection of all ideals that contain $x_1, x_2, ..., x_n$.

Note: In the noncommutative ring, the ideal generated by x is defined to be the intersection of all ideals that contain x.

3. (Refer back to Homework 2, Question 4) Consider the ring of integers localized at p, i.e., $R = \mathbb{Z}_{(p)}$. Consider the set

$$p\mathbb{Z}_{(p)} := \{\frac{ap}{b} \mid \gcd(p,b) = 1\}$$

Show that $p\mathbb{Z}$ is an ideal of $\mathbb{Z}_{(p)}$.

4. (Important) Let *R* be a commutative ring with unity. An element *a* in *R* is called **nilpotent** if $a^n = 0$, for some positive integer *n*. Show that the set of all nilpotent elements of *R* is an ideal of *R*.

(b) If *a* is a nilpotent element, then 1 - a is a unit.

(Hint: Factor $1 - a^n$)

5. Let *p* be a prime number. Let *R* be a commutative ring with unity and consider the set

 $I_p := \{r \in R \mid \text{ the additive order of } r \text{ is a power of } p\}$

Show that I_p is an ideal.

6. Let *R* be a commutative ring with unity and *a* be an element of *R*. Prove that the annihilator of *a* is in fact an ideal.