University of Bahrain Department of Mathematics MATHS312: Abstract Algebra II Spring 2018 Dr. Abdulla Eid

Homework 7: Ring Homomorphism Due on April 12, 2018

Name: _____

1. Let $\varphi : R \to S$ and $B \subseteq S$ is a maximal ideal. Show that $\varphi^{-1}(B)$ is a maximal ideal.

2. Let $R = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix}, a, b \in \mathbb{Z} \right\}$. Define a map $\varphi : R \to \mathbb{Z}$

$$\begin{pmatrix} a & b \\ b & a \end{pmatrix} \mapsto a - b$$

- 1. Show that *R* is a ring homomorphism.
- 2. Find ker(φ).
- 3. Show $R / \ker(\varphi) \simeq \mathbb{Z}$.
- 4. If ker(φ) a prime ideal? maximal ideal?

3. (Frobenius map) Let char(*R*)=p, show that the map

$$\varphi: R \to R$$
$$x \mapsto x^p$$

is a ring homomorphism.

4. Show that a homomorphism from a field onto a nontrivial ring is an isomorphism. (Hint: Use the first isomorphism theorem)

5. Show that $\mathbb{Z}[\sqrt{2}]$ is not ring isomorphic to $\mathbb{Z}[\sqrt{5}]$.