University of Bahrain
Department of Mathematics
MATHS312: Abstract Algebra II
Spring 2018
Dr. Abdulla Eid

Homework 9: Polynomials Part 2 Due on April 26, 2018

Name: \qquad

1. show that $f(X)=X^{2}+3 X+2$ has four zeros over \mathbb{Z}_{6}. Does that contradict the fact that every polynomial of degree n must have at most n zeros? Explain
2. List all polynomials of degree 2 over \mathbb{Z}_{2}.
3. (a) Show that $f(X)=x^{2}+x+4$ is irreducible over \mathbb{Z}_{11}.
(b) Let $f(x)=x^{3}+6$. Write $\mathrm{f}(\mathrm{x})$ as a product of irreducible polynomials over \mathbb{Z}_{7}.
(c) Let $f(x)=X^{3}+X^{2}+X+1$. Write $\mathrm{f}(\mathrm{x})$ as a product of irreducible polynomials over \mathbb{Z}_{2}.
(d) Find all the zeros and their multiplicities of $X^{5}+4 X^{4}+4 X^{3}-X^{2}-4 X+1$ over \mathbb{Z}_{5}.
4. Determine which of the polynomials below is (are) irreducible over \mathbb{Q}.
a. $X^{5}+9 X^{4}+12 X^{2}+6$
b. $X^{4}+X+1$
c. $X^{4}+3 X^{2}+3$
d. $X^{5}+5 X^{2}+1$
e. $(5 / 2) X^{5}+(9 / 2) X^{4}+15 X^{3}+(3 / 7) X^{2}+6 X+3 / 14$
5. Consider $f(X)=X^{4}+1$.
(a) Show that $f(X)$ is irreducible over \mathbb{Z} and \mathbb{Q}.
(b) Show that $f(X)$ is irreducible over \mathbb{R}.
(c) Show that $f(X)$ is reducible over \mathbb{Z}_{p} for every prime p.
(d) Explain why the converse of the $\bmod p$ irreducibility test does not work.
