Section 1.1
 System of Linear Equations

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

(1) To represent system of linear equations by several ways.
(2) To solve system of linear equations using Jordan Gaussian Elimination.
(3) To solve system of linear equations using the inverse of a matrix.

1- Representing Linear System as augmented matrix and matrix form

Example 1

Represent the linear system in two forms

$$
\begin{aligned}
2 x-7 y & =-1 \\
x+3 y & =6
\end{aligned}
$$

2- Solving System of Linear Equations using elementary row operations
Example 2
Solve the system

$$
\begin{aligned}
2 x-7 y & =-1 \\
x+3 y & =6
\end{aligned}
$$

Solution: First we write the augmented matrix of the system which is

$$
\begin{array}{ll}
\left(\begin{array}{cc|c}
2 & -7 & -1 \\
1 & 3 & 6
\end{array}\right), & R_{1} \leftrightarrow R_{2} \\
\left(\begin{array}{cc|c}
1 & 3 & 6 \\
2 & -7 & -1
\end{array}\right), & R_{2} \rightarrow R_{2}-2 R_{1} \\
\left(\begin{array}{ccc}
1 & 3 \\
2-2(1) & -7-2(3) & -1-2(6)
\end{array}\right)
\end{array}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
1 & 3 & 6 \\
2-2(1) & -7-2(3) & -1-2(6)
\end{array}\right), \\
& \left(\begin{array}{cc|c}
1 & 3 & 6 \\
0 & -13 & -13
\end{array}\right) \quad R_{2} \rightarrow \frac{1}{-13} R_{2} \\
& \left(\begin{array}{ll|l}
1 & 3 & 6 \\
0 & 1 & 1
\end{array}\right) R_{1} \rightarrow R_{1}-3 R_{2} \\
& \left(\begin{array}{cc|c}
1-3(0) & 3-3(1) & 6-3(1) \\
0 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & 0 & 3 \\
0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

So $x=3$ and $y=1$ and thus the solution set is $\{(3,1)\}$

Example 3
Solve the system

$$
\begin{array}{r}
x+4 y=9 \\
3 x-y=6 \\
2 x-2 y=4
\end{array}
$$

Solution: First we write the augmented matrix of the system which is

$$
\begin{aligned}
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
3 & -1 & 6 \\
2 & -2 & 4
\end{array}\right), \quad R_{2} \rightarrow R_{2}-3 R_{1} \quad R_{3} \rightarrow R_{3}-2 R_{1} \\
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
3-3(1) & -1-3(4) & 6-3(9) \\
2-2(1) & -2-2(4) & 4-2(9)
\end{array}\right) \\
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
0 & -13 & -21 \\
0 & -10 & -14
\end{array}\right) \quad R_{2} \rightarrow \frac{1}{-13} R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
1 & 4 & 9 \\
0 & 1 & \frac{-21}{-13} \\
0 & -10 & -14
\end{array}\right), \quad R_{3} \rightarrow R_{3}+10 R_{2} \\
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
0 & 1 & \frac{-21}{-13} \\
0 & -10+10(1) & -14+10\left(\frac{-21}{-13}\right)
\end{array}\right) \\
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
0 & 1 & \frac{-21}{-13} \\
0 & 0 & \frac{28}{13}
\end{array}\right)
\end{aligned}
$$

We have $0=\frac{28}{13}$ which is a false statement and thus there will be no solution.

Example 4
Solve the system

$$
\begin{aligned}
x+y-z & =7 \\
4 x+6 y-4 z & =8 \\
x-y-5 z & =23
\end{aligned}
$$

Solution: First we write the augmented matrix of the system which is

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
4 & 6 & -4 & 8 \\
1 & -1 & -5 & 23
\end{array}\right), \quad R_{2} \rightarrow R_{2}-4 R_{1} \quad R_{3} \rightarrow R_{3}-R_{1} \\
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
4-4(1) & 6-4(1) & -4-4(-1) & 8-4(7) \\
1-1 & -1-1 & -5-(-1) & 23-7
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
0 & 2 & 0 & -20 \\
0 & -2 & -4 & 16
\end{array}\right) \quad R_{2} \rightarrow \frac{1}{2} R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
1 & 1 & -1 & 7 \\
0 & 1 & 0 & -10 \\
0 & -2 & -4 & 16
\end{array}\right), \quad R_{3} \rightarrow R_{3}+2 R_{2} \\
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
0 & 1 & 0 & -10 \\
0 & -2+2(1) & -4+2(0) & 16+2(-10)
\end{array}\right) \\
& \left(\begin{array}{ccc:c}
1 & 1 & -1 & 7 \\
0 & 1 & 0 & -10 \\
0 & 0 & -4 & -4
\end{array}\right) R_{3} \rightarrow \frac{1}{-4} R_{3} \\
& \left(\begin{array}{ccc:c}
1 & 1 & -1 & 7 \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 1
\end{array}\right) \quad R_{1} \rightarrow R_{1}+R_{3} \\
& \left(\begin{array}{ccc:c}
1+1(0) & 1+1(0) & -1+1(1) & 7+1(1) \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & 1 & 0 & 8 \\
0 & 1 & 0 & -10
\end{array}\right) \quad R_{n} \rightarrow R_{1}-R_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
1 & 1 & 0 & 8 \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 1
\end{array}\right) \quad R_{1} \rightarrow R_{1}-R_{3} \\
& \left(\begin{array}{ccc:c}
1 & 0 & 0 & 18 \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

So $x=18, y=-10$, and $z=1$. Solution Set $=\{(18,-10,1)\}$.

Example 5

Solve the system

$$
\begin{aligned}
x+3 y & =2 \\
2 x+7 y & =4 \\
3 x+15 y+3 z & =15
\end{aligned}
$$

Solution: First we write the augmented matrix of the system which is

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
1 & 3 & 0 & 2 \\
2 & 7 & 0 & 4 \\
3 & 15 & 3 & 15
\end{array}\right), \quad \begin{array}{cc:c}
R_{2} \rightarrow R_{2}-2 R_{1} & R_{3} \rightarrow R_{3}-3 R_{1} \\
\left(\begin{array}{cccc}
& 1 & 3 & 0 \\
2 & -2(1) & 7-2(3) & 0-2(0) \\
3-3(1) & 15-3(3) & 3-3(0) & 15-3(2) \\
3-3)
\end{array}\right. \\
\left(\begin{array}{ccc:c}
1 & 3 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 6 & 3 & 9
\end{array}\right) \quad R_{3} \rightarrow R_{3}-6 R_{2}
\end{array} l
\end{aligned}
$$

3 - Solving Linear System using the inverse of a matrix

Example 6

Solve

$$
\begin{aligned}
& 3 x+y=2 \\
& 4 x+y=3
\end{aligned}
$$

Solution: This system can be written in a matrix multiplication form as

$$
\begin{aligned}
\left(\begin{array}{ll}
3 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} & =\binom{2}{3} \\
A\binom{x}{y} & =\binom{2}{3} \\
A^{-1} A\binom{x}{y} & =A^{-1}\binom{2}{3} \\
I_{2}\binom{x}{y} & =A^{-1}\binom{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{x}{y}=A^{-1}\binom{2}{3}=\left(\begin{array}{cc}
-1 & 1 \\
4 & -3
\end{array}\right)\binom{2}{3} \\
& \binom{x}{y}=\binom{1}{-1}
\end{aligned}
$$

Exercise 7

Solve the following system using the inverse matrix method.

$$
\begin{array}{r}
2 x-3 y=9 \\
4 x+y=1
\end{array}
$$

