Section 4.3 Linear Independent Vectors

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:

- O Define Linearly independent and linearly dependent.
- Prom dependent to independent.
- 3
- 4

Subspace

Definition 1

Let V be a vector space. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are called **linearly independent** vectors if the equation

$$k_1\mathbf{v}_1+k_2\mathbf{v}_2+\ldots k_n\mathbf{v}_n=\mathbf{0}$$

has only the unique solution $k_1 = 0, k_2 = 0, \dots, k_n = 0$ (called the **trivial** solution).

Note: This means k_1, k_2, \ldots, k_n are forced to be zero.

Definition 2

Let V be a vector space. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are called **linearly dependent** vectors if the equation

$$k_1\mathbf{v}_1+k_2\mathbf{v}_2+\ldots k_n\mathbf{v}_n=\mathbf{0}$$

has other solution than $k_1 = 0, k_2 = 0, \dots, k_n = 0$ (called the **nontrivial** solution) Dr. Abdulla Eid (University of Bahrain)

Determine whether the vectors $e_1 =$

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$$
, $e_2=\begin{pmatrix} 0\\1\\0 \end{pmatrix}$, $e_3=\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ are

linearly independent in \mathbb{R}^3 or not.

Dr. Apquils

Determine whether the vectors
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 5 \\ 6 \\ -1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$
are linearly independent in \mathbb{R}^3 or not.

Determine whether the vectors $\boldsymbol{v}_1 =$

$$\begin{pmatrix} 1\\2\\2\\-1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 4\\9\\9\\-4 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 5\\8\\9\\-5 \end{pmatrix}$$

are linearly independent in ${\rm I\!R}^4$ or not.

Determine whether the vectors $P_1 = 1$, $P_2 = X$, $P_3 = X^2$, ..., $P_n = X^n$ are linearly independent in \mathbb{P}_n or not.

Dr. Apolulis Fio

Determine whether the vectors $P_1 = 1 - X$, $P_2 = 5 + 3X - 2X^2$, $P_3 = 1 + 3X - X^2$ are linearly independent in \mathbb{P}_2 or not.

Dr. Apquilia Eio

The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is linearly independent if and only if at least one of the vector is expressible as linear combination of the rest.

Corollary 9

Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a linearly dependent set with $\mathbf{v}_1 = k_2\mathbf{v}_2 + \dots + k_n\mathbf{v}_n$, then

$$span\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\}=span\{\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n\}$$

Determine whether the vectors $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$,

 $\mathbf{v}_4 = \begin{pmatrix} 1\\4\\5 \end{pmatrix}$ are linearly independent in \mathbb{R}^3 or not. If not, find an independent set from these vectors that gives the same span.

The set { \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_r } of vectors in \mathbb{R}^n with r > n is linearly dependent.

- **1** A set containing **0** is linearly dependent.
- A set with exactly one vector is linearly independent if and only if that vector is not 0.
- A set with exactly two vectors if and only if neither vector is a scalar multiple of the other.

$\mathsf{Maps}(\mathbb{R},\mathbb{R})$

Definition 13

Let f_1, f_2, \ldots, f_n are functions that are (n-1) differentiable functions. The determinant

is called the **Wronskian** of f_1, f_2, \ldots, f_n .

If $f_1, f_2, ..., f_n$ have n - 1 continuous derivatives with a **nonzero** Wronskian, then these functions are linearly independent.

Determine whether the vectors $f_1 = 6$, $f_2 = 4 \sin^2 x$, $f_3 = 3 \cos^2 x$ are linearly independent in Maps(\mathbb{R}, \mathbb{R}) or not.

Dr. Apolulis File

Determine whether the vectors $f_1 = x$, $f_2 = e^x$, $f_3 = e^{-x}$ are linearly independent in Maps (\mathbb{R}, \mathbb{R}) or not.

