Section 4.8
 Rank and Nullity

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:

(1) Define the rank, nullity of a matrix and ways to find them.
(2) The Fundamental spaces of a matrix.

1 - Define rank and Nullity

Example 1

Consider the matrix

$$
A=\left(\begin{array}{cccc}
2 & -1 & 0 & 1 \\
3 & 5 & 7 & -6 \\
1 & 4 & 2 & 7
\end{array}\right)
$$

(1) Find the dimension of the row/column space of A.
(2) Find the dimension of the null space.

Definition 2

Let A be an $m \times n$ matrix. The dimension of row/column space of A is called the rank of A, denoted by $\operatorname{Rank}(A)$.

Definition 3

Let A be an $m \times n$ matrix. The dimension of null space of A is called the nullity of A, denoted by $\operatorname{Nullity}(A)$.

Theorem 4
Rank $(A)=$ Number of pivots in the RREF of A.
Nullity $(A)=$ Number of free variables in the RREF of A.
Theorem 5
(The Dimension Theorem for Matrices)

$$
\operatorname{Rank}(A)+\operatorname{Nullity}(A)=n=\text { number of columns }
$$

Example 6

Discuss the rank and nullity of the matrix

$$
A=\left(\begin{array}{ccc}
1 & -1 & t \\
1 & -t & -1 \\
t^{2} & 1 & -1
\end{array}\right)
$$

Example 7

Find the largest possible value for the rank of A and the smallest possible value for the nullity of A, given the size of A is (a) 4×6 (b) 5×5 (c) 6×4

2 - The four fundamental spaces of a matrix
We have 6 spaces associated with a matrix A and these are

row space of A	column space of A	null space of A
row space of A^{T}	column space of A^{T}	null space of A^{T}

But in fact we have only four fundamental spaces associated with A and these are row space of A column space of A null space of A null space of A^{T}

Dimensions of these spaces are
$r \quad r$

$$
\begin{gathered}
n-r \\
m-r
\end{gathered}
$$

Example 8

If the size of A and rank of A are given, find the dimension of the row space of A, column space of A, null space of A, and null space of A^{T}. (a) $3 \times 4, \operatorname{Rank}(A)=2$.
(b) $3 \times 3, \operatorname{Rank}(A)=1$.
(c) $6 \times 5, \operatorname{Rank}(A)=5$.
(d) $5 \times 6, \operatorname{Rank}(A)=2$.

