# Section 5.2 Diagonalization

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

### Goal:

- Finding diagonalization of a matrix.
- When has a matrix A, a diagonalization?
- Senefits of diagonalization of a matrix.

#### Definition 1

If A is an  $n \times n$  matrix, then a **nonzero** vector **x** in  $\mathbb{R}^n$  is called an **Eigenvector** of A if

$$A\mathbf{x} = \lambda \mathbf{x}$$

for some scalar  $\lambda \in \mathbb{R}$ . The scalar  $\lambda$  is an **Eigenvalue** of A and **x** is said to be the **Eigenvector** corresponding to  $\lambda$ .



### Characteristic Polynomial of a matrix

#### Theorem 2

If A is an  $n \times n$  matrix, then  $\lambda$  is an Eigenvalue if and only if

$$\det(\lambda I_n - A) = \mathbf{0}$$

This is called the characteristic polynomial of A.

#### Find the Diagonalization of

$$A = \begin{pmatrix} 2 & -1 \\ 10 & -9 \end{pmatrix}$$

Or. Apphillar

Write the following matrix

$$A = \begin{pmatrix} 3 & 0 \\ 5 & 3 \end{pmatrix}$$

as  $A = PDP^{-1}$ , for some matrix P and diagonal matrix D.

Questions: How can we do that? When that can happen? Why would you that in the first place?

Write the following matrix

$$\mathsf{A} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

as  $A = PDP^{-1}$ , for some matrix P and diagonal matrix D.

Questions: How can we do that? When that can happen? Why would you that in the first place?

Write the following matrix

$$\mathsf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$

as  $A = PDP^{-1}$ , for some matrix P and diagonal matrix D.

Questions: How can we do that? When that can happen? Why would you that in the first place?

### When can we diagonalize a matrix?

Theorem 7

A is diagonalizable if and only if A has exactly n linearly independent Eigenvectors.

Or. Abdulla Fio

A shortcut (sometimes is useful)

#### Theorem 8

If A has n distinct Eigenvalues, then A is diagonalizable.

## Why diagonalization?

Example 9

Find  $A^{11}$ , where

$$A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & -3 & 1 \end{pmatrix}$$

## Why diagonalization?

Example 10

Find  $A^{1000}$ ,  $A^{-1000}$ ,  $A^{2017}$ ,  $A^{20}$ , where

$${f A}=egin{pmatrix} 1 & -2 & 8 \ 0 & -1 & 0 \ 0 & 0 & -1 \end{pmatrix}$$

Dr. Apqui

### Why diagonalization?

If A is diagonalizable, i.e.,  $A = PDP^{-1}$ , then we have

$$A^{-1} = PD^{-1}P^{-1}.$$

$$A^n = PD^nP^{-1}.$$

- det(A) = det(D) = multiplication of the Eigenvalues.
- $Rank(A) = Rank(PDP^{-1}).$
- So  $Nullity(A) = Nullity(PDP^{-1}).$
- Trace(A) = Trace( $PDP^{-1}$ ).