Section 1.4 Absolute Value

Dr. Abdulla Eid

College of Science

MATHS 103: Mathematics for Business I

Absolute Value

Definition

The **absolute value** of any number x is the *distance* between x and the zero. We denote it by |x|.

Example

- |2| = distance between 2 and 0 = 2.
- \bullet |-3| = distance between -3 and 0 = 3.
- |0| = distance between 0 and 0 = 0.
- \bullet |-2| = distance between -2 and 0 = 2.

Note: The absolute value |x| is always **non-negative**, i.e., $|x| \ge 0$.

Properties of Absolute Values

$$|ab| = |a| \cdot |b|.$$

$$|a-b| = |b-a|.$$

$$|a+b| \le |a| + |b|$$
.

$$|a| \le a \le |a|$$

Rules

For equations (or inequalities) that involve absolute value we need to get rid of the absolute value which can be done only using the following three rules:

- 1 Rule 1: $|X| = a \to X = a$ or X = -a.
 2 Rule 2: $|X| < a \to -a < X < a$.
- **3** Rule 3: $|X| > a \to X > a$ or X < -a.

Solve
$$|x - 3| = 2$$

Solution: We solve the absolute value using rule 1 to get rid of the absolute value.

$$|x-3| = 2$$

 $x-3 = 2$ or $x-3 = -2$
 $x = 5$ or $x = 1$

Solution Set = $\{5, 1\}$.

Solve |7 - 3x| = 5

Ox. Wodnily Eig

Solve
$$|x - 4| = -3$$

Solution: Caution: The absolute value can never be negative, so in this example, we have to stop and we say there are no solution! Solution Set $= \{\} = \emptyset$.

(Old Exam Question) Solve |7x + 2| = 16.

Solve
$$|x - 2| < 4$$

Solution:

$$|x-2| < 4$$

 $-4 < x-2 < 4$
 $-4+2 < x < 4+2$
 $-2 < x < 6$

The Solution

1- Set notation

Solution Set =
$$\{x \mid -2 < x < 6\}$$

2- Number Line notation

3- Interval notation

$$(-2, 6)$$

Solve $|3-2x| \leq 5$

Ox. Woqnilis Eig

Solve
$$|x+5| \leq -2$$

Solution: Caution: The absolute value can never be negative or less than a negative, so in this example, we have to stop and we say there are no solution! Solution Set $= \{\} = \emptyset$.

(Old Final Exam Question) Solve $|5 - 6x| \le 1$

(Old Final Exam Question) Solve $|2x - 7| \le 9$

Solve
$$|x+5| \ge 7$$

Solution:

$$|x+5| \ge 7$$

$$x+5 \ge 7 \text{ or } x+5 \le -7$$

$$x \ge 2 \text{ or } x \le -12$$

The Solution

1- Set notation

Solution Set =
$$\{x \mid x \ge 2 \text{ or } x \ge -12\}$$

2- Number Line notation

3- Interval notation

$$(-\infty, -12] \cup [2, \infty)$$

where \cup means union of two intervals.

Solve |3x - 4| > 1

Or. Wodills Eig

Solve
$$|\frac{3x-8}{2}| \ge 4$$

Solution:

$$\left|\frac{3x-8}{2}\right| \ge 4$$

$$\frac{3x-8}{2} \ge 4 \text{ or } \frac{3x-8}{2} \le -4$$

$$3x-8 \ge 8 \text{ or } 3x-8 \le -8$$

$$3x \ge 16 \text{ or } 3x \le 0$$

$$x \ge \frac{16}{3} \text{ or } x \le 0$$

The Solution

1- Set notation

Solution Set =
$$\{x \mid x \ge \frac{16}{3} \text{ or } x \ge 0\}$$

2- Number Line notation

3- Interval notation

$$(-\infty,0] \cup [\frac{16}{3},\infty)$$

(Old Exam Question) Solve |x + 8| + 3 < 2

(Old Exam Question) Solve $|10x - 9| \ge 11$.

