Section 2.2 Special Functions

Dr. Abdulla Eid

College of Science

MATHS 103: Mathematics for Business I

Example

(Constant Function) Consider the function

$$f: (-\infty, \infty) \to (-\infty, \infty)$$

 $x \mapsto 3$

or simply by f(x) = 3

•
$$f(1)=3$$
. $f(0)=3$.

•
$$f(-2)=3$$
. $f(-7)=3$.

The output is always 3 (regardless of the input)

- Domain = $(-\infty, \infty)$.
- Co-domain= $(-\infty, \infty)$.
- Range={3}.

Constant Function

Let c be any fixed number

Definition

The constant function at c is the function

$$f(x) = c$$

Question: What is a linear equation? quadratic equation?

Answer:

① Linear equation: ax + b = 0.

2 Quadratic equation: $ax^2 + bx + c = 0$.

Question: What is a linear function? quadratic function?

Answer:

Linear function: f(x) = ax + b.
Quadratic function: f(x) = ax² + bx + c.

Definition

A **polynomial** function is a function of the form

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0,$$

where $a_n, a_{n-1}, \ldots, a_1, a_0$ are real numbers are called coefficients with $a_n \neq 0$ is called leading coefficient and n is an integer called the degree of p(x).

Example

f(x)	Degree	Leading Coefficient
3x + 1		
$x^{2} + x + 1$		
$1 + 2x + 2x^3 + x^2$		
7		
$\frac{x^2+5x+10}{7}$		

Example

(Non-Polynomial Examples)

- **1** $f(x) = \frac{x^2+1}{x}$.
- **2** $f(x) = \sqrt{x}$.
- **3** $f(x) = 3^x$.

Definition

A **rational** function is a quotient of two polynomials (polynomial over polynomial).

Example

1
$$f(x) = \frac{x^2+1}{x}$$
.

2
$$f(x) = \frac{x^2 - 2x}{x^4 + x^7}$$
.

$$f(x) = \frac{2x^3+1}{7x+2}.$$

$$f(x) = x^{-4} = \frac{1}{x^4}.$$

Example

(Case-Defined Functions)

$$g(x) = \begin{cases} x - 1, & x \ge 3\\ 3 - x^2, & x < 3 \end{cases}$$

- $g(1)=3-(1)^2=2$.
- $g(-2)=3-(-2)^2=-1$.
- g(6)=6-1=5.
- g(4)=4-1=3.
- g(3)=3-1=2.

Exercise

Consider the function

$$F(x) = \begin{cases} 2, & t > 1 \\ 0, & t = 1 \\ -1, & t < 1 \end{cases}$$

Find the following: F(12), $F(-\sqrt{3})$, F(1), $F(\frac{15}{2})$.

Exercise

Consider the function

$$f(x) = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Find the following: f(1), f(-2), f(-7), f(7), f(-12022), f(0). Can you recognize this function?