University of Bahrain Department of Mathematics MATHS101: Calculus I Spring 2016

Test 1

Student's Name:	ID:		
Section:	Serial Number		

- Do not open the exam until you are instructed to do so.
- Show sufficient work to justify each answer.
- Calculators are allowed but cell phones are *not* allowed during the exam.
- Exchange of any material such as calculator, pen, eraser is *not* allowed.
- No questions are allowed.
- You have 1 hour to finish this exam. You can leave only after 30 minutes of the exam.
- There are 3 questions and 5 pages in this exam.

Question	Points	Score
1	20	
2	18	
3	12	
Total:	50	

Exam Version: A

Question 1 (20 points)

Choose the correct answer for each of the following:

- (1) If $\lim_{x \to -2} \frac{2+x}{x^2+5x+6}$
 - A. 5

B. $\frac{1}{5}$

C. 1

D. -5

E. -1

F. $-\frac{1}{5}$

- (2) If $y = \sqrt{\sec x + e^{-x}}$, then y' =
 - A. $\frac{\sec x \tan x e^{-x}}{\sqrt{\sec x + e^{-x}}}$
- B. $\frac{\sec x \tan x e^{-x}}{2\sqrt{\sec x + e^{-x}}}$
- C. $\sec x \tan x e^{-x}$

- $D. \frac{1}{2\sqrt{\sec x + e^{-x}}}$
- E. $\frac{\tan^2 x e^{-x}}{2\sqrt{\sec x + e^{-x}}}$
- $F. \frac{\sec x \tan x + e^{-x}}{2\sqrt{\sec x + e^{-x}}}$
- (3) At what points is the function $f(x) = \sqrt{3x 9}$ continuous?
 - A. $(3, \infty)$

B. $(\infty, 3)$

C. $[9, \infty)$

D. $[-3, \infty)$

E. $(-\infty, 3]$

F. $[3, \infty)$

- (4) $\lim_{x\to 0} \frac{|x-2|}{x-2} =$
 - A. -1

B. 1

C. 2

D. -2

E. 0

 $F. \infty$

- (5) If $f(x) = \frac{4}{x+5}$, then the value of f'(0) is
 - A. $\frac{-4}{5}$

B. $\frac{4}{25}$

C. $\frac{4}{5}$

D. $\frac{-4}{25}$

E. 0

F. $\frac{-1}{25}$

- (6) $\lim_{x \to 1^+} \frac{2x 3}{x^2 1} =$
 - A. -3

B. $-\infty$

C. 2

D. -1

E. 0

F. ∞

- $(7) \lim_{x \to \infty} \frac{\sqrt{x^2}}{x} =$
 - A. -1

B. ∞

C. $-\infty$

D. 0

E. 1

F. 2

- (8) If $y = \sqrt[7]{x^3}$, then y' =
 - A. $\frac{3}{7}x^{\frac{3}{7}}$

B. $x^{\frac{-4}{7}}$

D. $\frac{7}{3}x^{\frac{4}{3}}$

E. $\frac{3}{7}x^{\frac{-3}{7}}$

- C. $\frac{3}{7}x^{\frac{-4}{7}}$ F. $\frac{4}{7}x^{\frac{-4}{7}}$
- (9) If $3 x^2 \le f(x) \le 3 + x^2$ for all x, then $\lim_{x \to 0} f(x) =$
 - A. 4

B. 5

C. 3

D. 2

E. -3

F. None of the above

- $(10) \lim_{x \to \infty} \frac{\sqrt{4x^2 + 1}}{3x 5} =$
 - A. $\frac{1}{3}$

B. $\frac{2}{3}$

C. $\frac{4}{3}$

D. $\frac{3}{2}$

E. $\frac{-3}{2}$

F. 2

Question 2 (18 points)

(a) Find the derivative y' of the following function: (**Do not simplify**)

$$y = \left[x\sin(2x) + \tan^4(x^7)\right]^5$$

(b) Let
$$f(x) = \frac{x^2 - 4}{x^2 + 4}$$
. Find $f'(-2)$.

(c) Find the value(s) of a so that

$$f(x) = \begin{cases} x^2, & x \le 2\\ a^2 - 3x^2, & 2 < x \end{cases}$$

is continuous at every x.

Question 3 (8 + 4 points)

(a) Use the definition of the derivative to find f'(x) if $f(x) = \sqrt{x+5}$.

(b) Given that $f'(x) = \frac{x}{x^2 + 1}$ and $g(x) = \sqrt{3x - 1}$. Find $(f \circ g)'(x)$ (Simplify your answer).