University of Bahrain College of Science Department of Mathematics Second Semester 2012/2013 Final Examination

Course: MATHS 253 Date: 15/06/2013 Time: 11:30-13:30

Name:			
		ą.	
	ID Number:		
	Serial Number:	Cl	
	Senai Janunek:	Section Number	

PLEASE MAKE SURE YOUR COPY OF THIS EXAMINATION CONSISTS OF 8 PAGES AND 6 DIFFERENT QUESTIONS.

Question	Max. Marks	Marks obtained
1	16	
2	12	
3	12	
4	16	
5	12	
6	12	
Total	80	

Show all your work clearly

Question 1:[5+5+6 marks]

Prove each of the following

1) Premises: $s \Rightarrow p \land r, \neg p , \neg s \land \neg p \Leftrightarrow \neg q$ Conclusion: $\neg q$

2) If xz < yz and z < 0 then x > y. (Hint: Use contradiction)

3) 3 is a factor of $n^3 - n$ for n = 0, 1, 2, ... (Hint: Use induction)

Question 2:[2 marks each]

Complete each of the following statements

1) The domain of definition of $f(x) = \frac{\sqrt{x-1}+4}{x^2+x-2}$ is....

2) $(\forall x \in B) \ p(x) \text{ means } \forall x \ (\dots)$

4) The negation of $\forall z (\exists \varepsilon > 0) \ 0 \le z < \varepsilon \Rightarrow z = 0$ is

5) If $f:(0,\infty) \to IR$ is the function defined by $f(x) = x^2 - 3$ and B = [1,6], then $f^{-1}(B) = \dots$

6) $A \times B = \phi \Leftrightarrow \dots$

7) The power set $P(\{\phi, \{\phi\}\}) = ...$

8) The contrapositive of x > 0 and $y > 0 \Rightarrow xy > 0$ is

Question 3:[6+6 marks]

Prove each of the following using the pick - a - point method

1)
$$[(A \cap B) \cup (C - A)] \cup (B \cap C) \subset (A \cap B) \cup (C - A)$$

2) $(A \times C) \cap (B \times D) = (A \cap B) \times (C \cap D)$.

Question 4: [6+6+4 marks]

1) Let $f: \mathbb{R} - \{1\} \to \mathbb{R}$ be the function defined by $f(x) = \frac{x+2}{x-1}$. Show that f is one to one.

- 2) Let $f: D \to C$ and $g: C \to A$ be two functions
 - a) Prove the statement (f onto and g onto $\Rightarrow gof$ onto)

b) Write the converse of the statement in part a), then decide if is true or false justifying your answer.

<u>Question 5</u>: [6+6marks]

Let $f: D \to C$ be a function. For any subsets A and B of D

1) Prove $f(A) - f(B) \subset f(A - B)$.

2) Prove that if f is one to one, then $f^{-1}(f(A)) \times A \subset A \times A$.

Question 6:[7+5 marks]

Define a relation \mathcal{R} on the set $\mathbb{R} \times \mathbb{R}$ by $(x,y) \mathcal{R}(u,v)$ if and only if $x^2 + y^2 = u^2 + v^2$

1) Prove that \mathcal{R} is an equivalence relation.

2) List the elements in each of the equivalence classes [(0,0)] and [(1,0)]. Show your work.