University of Bahrain Department of Mathematics MATHS253: Set Theory Fall 2018 Dr. Abdulla Eid

Homework 11: Collection of Sets

Name: _

1. Let $S_n = [n - 1, n + 3] \subset \mathbb{R}$ and $I = \{1, 3, 4\}$. Find $S = \{S_i | i \in I\}, \bigcup_{i \in I} S_i$ and $\bigcap_{i \in I} S_i$. Draw your results in the real line.

2. Let $\{A_i : i \in I\}$ be a collection of sets and let $j \in I$. Prove that

$$\bigcap_{i\in I} A_i \subseteq A_j \subseteq \bigcup_{i\in I} A_i$$

3. Let $\{A_n : n \in \mathbb{N}\}$ be a collection of sets. Prove the following:

(a) If $A_0 \subseteq A_1 \subseteq A_2 \subseteq \ldots$, then $\bigcap_n A_n = A_0$

(b) If $A_0 \supseteq A_1 \supseteq A_2 \supseteq \dots$, then $\bigcup_n A_n = A_0$

4. Let $A_n = \{x \in \mathbb{N} \mid x \ge n\}$. Prove that $\bigcup_{n \in \mathbb{N}} A_n = \mathbb{N}$ and $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$.

MATHS 253 Homework 11: Collection of Sets, Page 3 of ??

5. (a) Prove the Arichmedian property of the real number: For all x > 0, there exists positve integer n such that $0 < x < \frac{1}{n}$.

(b) Let
$$C_n = \left[0, \frac{1}{n}\right)$$
 $(n \in \mathbb{N} - \{0\})$. Show that
$$\bigcap_{n=1}^{\infty} C_n = \{0\}$$

6. Let A_i ($i \in I$) be a collection of sets and B be a set. Prove the following:

(a) $B \cap (\bigcup_{i \in I} A_i) = \bigcup_{i \in I} (B \cap A_i)$

(b) $B \cup (\bigcap_{i \in I} A_i) = \bigcap_{i \in I} (B \cup A_i)$

(c)
$$\left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} A_i^c$$