University of Bahrain Department of Mathematics MATHS253: Set Theory Fall 2018 Dr. Abdulla Eid

Homework 14: Relations Due December 27, 2018

Name: _____

1. Write the relation *R* from $A = \{0, 1, 2, 3, 4\}$ to $B = \{0, 1, 2, 3\}$, where *aRb* if

1. a = b.

2. a + b = 4.

3. *a* < *b*.

4. *a* divides *b*.

- 2. For each of the following relations on the set {1,2,3,4}, decide whether it is reflexive, symmetric, and transitive. (Write only the final answer here and attach a separate paper with the solution
 - 1. $R_1 = \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}.$
 - 2. $R_2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}.$
 - 3. $R_3 = \{(2,4), (4,2)\}.$
 - 4. $R_4 = \{(1,2), (2,3), (3,4)\}.$
 - 5. $R_5 = \{(1,1), (2,2), (3,3), (4,4)\}.$
 - 6. $R_6 = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}.$

- 3. Determine whether the relation *R* on the set of all people is reflexive, symmetric, and transitive.
 - 1. $aRb : \iff a$ is taller than *b*.
 - 2. $aRb : \iff a$ and b were born on the same day.
 - 3. $aRb : \iff a$ has the same first name as b.
 - 4. $aRb : \iff a$ and b have a common grandparent.

- 4. Let *R*, *S* be two relations on *A*. Prove the following:
 - (a) If $R \subseteq S$, then $R^{-1} \subseteq S^{-1}$.

(b) $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$.

(c) $R \cup R^{-1}$ is symmetric.

5. Let *R* be a relation defined on $\{1, 2, 3, 4\}$ by

$$R = \{(1,3), (1,4), (2,2), (2,4), (3,1), (3,2), (4,4)\}$$

- (a) Compute R^{-1} .
- (b) Compute the relations $R \cup R^{-1}$ and $R \cap R^{-1}$ and check that they are symmetric.

6. For the relation $R = \{(x, y) : x \le y\}$ defined on \mathbb{N} , what is R^{-1} ?

7. (Composition of relations) Suppose that R, S are relations on some set A. Define the *composition* of R and S to be the new relation $R \circ S$ defined by

 $(a,c) \in R \circ S : \iff \exists b \in A, aRb \land bSc$

(a) If $R = \{(1,1), (1,2), (2,3), (3,1), (3,3)\}$ and $S = \{(1,2), (1,3), (2,1), (3,3)\}$, find $R \circ S$.

(b) Suppose that *R* and *S* are reflexive. Prove that $R \circ S$ is reflexive.

(c) Give an example of two symmetric relations *R* and *S* such that $R \circ S$ is *not* symmetric.

(d) Suppose that *R* and *S* are symmetric. Prove that $(a, c) \in R \circ S$ if and only if $(c, a) \in S \circ R$.

8. (Requires Linear Algebra) Let $A = \{1, 2, 3\}$ and define two relations R_1 and R_2 by

 $R_1 = \{(1,2), (2,1), (2,2), (2,3), (3,1)\}, R_2 = \{(1,2), (2,2), (2,3), (3,1), (3,2), (3,2)\}$

(a) Find the matrices M_{R_1} and M_{R_2} associated to the relations R_1 and R_2 .

(b) Find the matrix represents $R_1 \cap R_2$ (Hint: $M_{R_1 \cap R_2} = M_{R_1} \wedge M_{R_2}$)

(c) Find the matrix represents $R_1 \cup R_2$ (Hint: $M_{R_1 \cup R_2} = M_{R_1} \vee M_{R_2}$)

(d) Find the matrix represents $R_2 \circ R_1$ (Hint: $M_{R_2 \circ R_1} = M_{R_1} \odot M_{R_2}$, boolean matrix multiplication)

(e) Find the matrices represents $R_1^2 = R_1 \circ R_1$ and $R_1^3 = R_1 \circ R_1 \circ R_1$.