University of Bahrain Department of Mathematics MATHS253: Set Theory Fall 2018 Dr. Abdulla Eid

Homework 16: Partial Ordering Due December 31, 2018

Name: _____

1. Prove that the least upper bound of a poset (A, \preceq) is unique.

- 2. Consider the poset ({2,4,6,9,12,18,27,36,48,60,72},|).
 - (a) Draw the Hasse diagram for the above poset.

- (b) Find the maximal elements.
- (c) Find the minimal elements.
- (d) Is there a greatest element.
- (e) Is there a least element.
- (f) Find all upper bounds of $\{2,9\}$.
- (g) Find (if any) the least upper bound of $\{2,9\}$.

- (f) Find all lower bounds of $\{60, 72\}$.
- (g) Find (if any) the greatest lower bound of $\{60, 72\}$.
- 3. Given two posets (A_1, \preceq_1) and (A_2, \preceq_2) , define the **lexicographic ordering (dic-***tionary ordering)* \preceq on $A_1 \times A_2$ as follows

$$(a_1, b_1) \preceq (a_2, b_2) : \iff a_1 \prec a_2 \text{ or if } a_1 = a_2, \text{ then } b_1 \prec b_2$$

(a) Consider the usual \leq relation on \mathbb{Z} , is it true that $(3,5) \leq (4,8), (4,9) \leq (4,11), (1,2,3,5) \leq (1,2,4,3)$?

(b) Find the lexicographic ordering of the following string of English letters: *quack, quick, quicksilver, quicksand, quacking*

- 4. Consider the poset $(\mathcal{P}(\{1,2,3,4\},\subseteq))$.
 - (a) Draw the Hasse diagram for the above poset.

- (b) Find the maximal elements.
- (c) Find the minimal elements.
- (d) Is there a greatest element.
- (e) Is there a least element.
- (f) Find all upper bounds of $\{\{2\}, \{4\}\}$.
- (g) Find (if any) the least upper bound of $\{\{2\}, \{4\}\}$.

(f) Find all lower bounds of $\{\{1,3,4\},\{2,3,4\}\}$.

- (g) Find (if any) the greatest lower bound of $\{\{1,3,4\},\{2,3,4\}\}$.
- 5. (a) Let (A, R) be a poset. Show that (A, R^{-1}) is also a poset. The poset (A, R^{-1}) is called the **dual** of (A, R)

(b) Find the dual poset of $(\{1, 2, 3, 4\}, \leq)$ and $(\mathbb{Z}, |)$