University of Bahrain Department of Mathematics MATHS122: Calculus II

Spring 2016 Dr. Abdulla Eid

Worksheet 5: Integration of rational functions

Students' Name:			

1. Write the partial fraction decomposition of the following rational functions (**Do not evaluate the constants**).

$$1. \ \frac{2x+1}{x^2-7x+12}$$

2.
$$\frac{x^2}{(x-1)(x^2+2x+1)}$$

3.
$$\frac{48}{x^4 + 9x^2}$$

4.
$$\frac{x^4 + x^2 - 1}{x^3 + x}$$

2. Find the integrals in Question 1. (Do not evaluate the constants).

1.
$$\int \frac{2x+1}{x^2-7x+12} \, dx$$

$$2. \int \frac{x^2}{(x-1)(x^2+2x+1)} \, dx$$

$$3. \int \frac{48}{x^4 + 9x^2} \, dx$$

$$4. \int \frac{x^4 + x^2 - 1}{x^3 + x} \, dx$$

3. Find the constant in the partial fraction decomposition of the rational functions in Question 1.

1.
$$\frac{2x+1}{x^2-7x+12}$$

 $2. \ \frac{x^2}{(x-1)(x^2+2x+1)}$

3.
$$\frac{48}{x^4 + 9x^2}$$

$$4. \ \frac{x^4 + x^2 - 1}{x^3 + x}$$

4. Evaluate the following integral by completing the square.

$$1. \int \frac{1}{x^2 - 2x} \, dx$$

 $2. \int \frac{2x+1}{4x^2+12x-7} \, dx$

5. Make a substitution to express the integrand as rational function and then evaluate the integral.

$$1. \int \frac{\sqrt{x+1}}{x} dx$$

 $2. \int \frac{1}{1+\sqrt[3]{x}} \, dx$

- 6. To find the integral of a rational function of $\sin x$ and $\cos x$, the German mathematician K. Weierstrass noticed that the substitution $t = \tan\left(\frac{x}{2}\right)$ will convert the rational function into ordinary rational function of t.
 - 1. If $t = \tan\left(\frac{x}{2}\right)(-\pi < t < \pi)$, show that

$$\cos\left(\frac{x}{2}\right) = \frac{1}{\sqrt{1+t^2}} \text{ and } \cos\left(\frac{x}{2}\right) = \frac{t}{\sqrt{1+t^2}}$$

2. Show that

$$\cos x = \frac{1 - t^2}{1 + t^2}$$
 and $\sin x = \frac{2t}{1 + t^2}$

3. Show that

$$dx = \frac{2}{1+t^2} dt$$

7. Use the idea of the previous exercise to convert the following integral into integral of ordinary rational function in t.

$$1. \int \frac{1}{1 - \cos x} \, dx$$

 $2. \int \frac{1}{1+\sin x - \cos x} \, dx$