Section 1.3 (Part 2) Addition

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

1- Addition and Scalar Multiplication

Definition 1

Let $A=(A_{ij}),\ B=(B_{ij})$ be two matrices of the same size, and $c\in\mathbb{R}$ is a real number.

Matrix addition

$$A + B = (A_{ij} + B_{ij})$$
 "adding coordinatewise"

Scalar Multiplicaion

$$cA = (cA_{ii})$$
 "multipy everything by "c

Let

$$A = \begin{pmatrix} -2 & 1 \\ 2 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} -5 & -5 \\ 3 & -3 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & -1 \\ 3 & -3 \end{pmatrix}, \quad \mathbf{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Fine:

$$A + B = \begin{pmatrix} -2 & 1 \\ 2 & -3 \end{pmatrix} + \begin{pmatrix} -5 & -5 \\ 3 & -3 \end{pmatrix} = \begin{pmatrix} -2 - 5 & 1 - 5 \\ 2 + 3 & -3 - 3 \end{pmatrix}$$
$$= \begin{pmatrix} -7 & -4 \\ 5 & -6 \end{pmatrix}$$

$$2B = 2 \begin{pmatrix} -5 & -5 \\ 3 & -3 \end{pmatrix} = \begin{pmatrix} 2(-5) & 2(-5) \\ 2(3) & 2(-3) \end{pmatrix}$$
$$= \begin{pmatrix} -10 & -10 \\ 6 & -6 \end{pmatrix}$$

Let

$$A = \begin{pmatrix} -2 & 1 \\ 2 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} -5 & -5 \\ 3 & -3 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & -1 \\ 3 & -3 \end{pmatrix}, \quad \mathbf{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Find:

$$2A - 3B = 2\begin{pmatrix} -2 & 1 \\ 2 & -3 \end{pmatrix} - 3\begin{pmatrix} -5 & -5 \\ 3 & -3 \end{pmatrix}$$
$$= \begin{pmatrix} -4 & 2 \\ 4 & -6 \end{pmatrix} - \begin{pmatrix} -15 & -15 \\ 9 & -9 \end{pmatrix}$$
$$= \begin{pmatrix} 11 & 17 \\ -5 & 3 \end{pmatrix}$$

Let

$$A = \begin{pmatrix} -2 & 1 \\ 2 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} -5 & -5 \\ 3 & -3 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & -1 \\ 3 & -3 \end{pmatrix}, \quad \mathbf{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Find:

$$3A + C^{T} = 3 \begin{pmatrix} -2 & 1 \\ 2 & -3 \end{pmatrix} + \begin{pmatrix} -5 & -5 \\ 3 & -3 \end{pmatrix}^{T}$$
$$= \begin{pmatrix} -6 & 3 \\ 6 & -9 \end{pmatrix} + \begin{pmatrix} -1 & 3 \\ -3 & -3 \end{pmatrix}$$
$$= \begin{pmatrix} -7 & 6 \\ 3 & -12 \end{pmatrix}$$

Let

$$A = \begin{pmatrix} -2 & 1 \\ 2 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} -5 & -5 \\ 3 & -3 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & -1 \\ 3 & -3 \end{pmatrix}, \quad \mathbf{0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Find:

$$(2A - B)^{T} = \left(2 \begin{pmatrix} -2 & 1 \\ 2 & -3 \end{pmatrix} - \begin{pmatrix} -5 & -5 \\ 3 & -3 \end{pmatrix}\right)^{T}$$
$$= \left(\begin{pmatrix} -4 & 2 \\ 4 & -6 \end{pmatrix} - \begin{pmatrix} -5 & -5 \\ 3 & -3 \end{pmatrix}\right)^{T}$$
$$= \begin{pmatrix} 1 & 7 \\ 1 & 9 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 1 \\ 7 & 9 \end{pmatrix}$$

Exercise 6

Find $A + \mathbf{0}$, $\mathbf{0} + A$. What do you conclude? What it is the name of $\mathbf{0}$?

Exercise 7

(Old Exam Question) Let

$$A = \begin{pmatrix} -3 & 1 & 5 \\ 2 & 1 & 0 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 5 \\ 6 & 3 \\ 0 & -4 \end{pmatrix}$$

Find $3A - 2C^T$ and $2A + \mathbf{0}$

Solve

$$\begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix} + 2 \begin{pmatrix} x \\ y \\ 2z \end{pmatrix} = \begin{pmatrix} -10 \\ -24 \\ 20 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix} + 2 \begin{pmatrix} x \\ y \\ 2z \end{pmatrix} = \begin{pmatrix} -10 \\ -24 \\ 20 \end{pmatrix}$$
$$\begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix} + \begin{pmatrix} 2x \\ 2y \\ 4z \end{pmatrix} = \begin{pmatrix} -10 \\ -24 \\ 20 \end{pmatrix}$$

continue...

$$\begin{pmatrix} 4+2x \\ 6+2y \\ 8+4z \end{pmatrix} = \begin{pmatrix} -10 \\ -24 \\ 20 \end{pmatrix}$$
$$4+2x = 10 \rightarrow x = 3$$
$$6+2y = -24 \rightarrow y = -15$$
$$8+4z = 20 \rightarrow z = 5$$

Solution Set= $\{(3, -15, 5)\}$.

Vector Space Axioms

Consider the set $Mat(m, n, \mathbb{R})$ of $m \times n$ matrices together with the operations:

$$+: \mathsf{Mat}(m, n, \mathbb{R}) \times \mathsf{Mat}(m, n, \mathbb{R}) \to \mathsf{Mat}(m, n, \mathbb{R})$$

$$(A, B) \mapsto A + B$$

and

$$\cdot : \mathbb{R} \times \mathsf{Mat}(m, n, \mathbb{R}) \to \mathsf{Mat}(m, n, \mathbb{R})$$

$$(k, B) \mapsto kB$$

Satisfies the following properties:

A1: Closure For any $A, B \in Mat(m, n, \mathbb{R})$, we have

$$A + B \in Mat(m, n, \mathbb{R})$$

Vector Space Axioms

A1: Closure For any $A, B \in Mat(m, n, \mathbb{R})$, we have

$$A + B \in \mathsf{Mat}(m, n, \mathbb{R})$$

A2: Associativity For any $A,B,C\in \mathrm{Mat}(m,n,\mathbb{R}),$ we have (A+B)+C=A+(B+C)

A3: Zero There exists a special matrix $\mathbf{0} \in \mathsf{Mat}(m, n, \mathbb{R})$ such that

$$A + \mathbf{0} = A = \mathbf{0} + A$$

A4: Negative There is an element $-A \in Mat(m, n, \mathbb{R})$ such that

$$A + (-A) = \mathbf{0} = (-A) + A$$

A2: Commutative For any $A, B \in Mat(m, n, \mathbb{R}), A + B = B + A$

Vector Space Axioms

S1: Closure For any $k, \ell \in \mathbb{R}$ and $A, B \in \mathsf{Mat}(m, n, \mathbb{R})$, we have

$$k \cdot A \in \mathsf{Mat}(m, n, \mathbb{R})$$

$$k \cdot (A + B) = k \cdot A + k \cdot B$$

 $(k + \ell) \cdot A = k \cdot A + \ell \cdot A$

$$(k+\ell)\cdot A = k\cdot A + \ell\cdot A$$

$$(k\ell)\cdot A = k(\ell\cdot A)$$

S5:

$$1 \cdot A = A$$