# Section 4.2 Subspaces

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

#### Goal:

- Opening subspaces.
- Subspace test.
- Linear Combination of elements:
- Subspace generated by elements (Span).

## Subspace

#### Definition 1

Let V be a vector space. A subset W of V is called a **subspace** of V if W is itself a vector space under the same operations of V.

## Subspace Test

#### Theorem 2

If W is a subset of V such that

- $\mathbf{0} \in W$ .
- ② For all  $\mathbf{u}, \mathbf{v} \in W$ , we have  $\mathbf{u} + \mathbf{v} \in W$ . (Closed under addition Axiom (1))
- **3** For all  $\mathbf{u} \in W$ ,  $k \in \mathbb{R}$ , we have  $k\mathbf{u} \in W$ . (Closed under scalar multiplication Axiom (6))

Then W is a subspace of V.

In short, we need to check that the zero is in W and W is closed under + and  $\cdot$ 

## Zero Subspace

## Example 3

Let V be any vector space. Let  $W = \{0\}$ . Then W is a subspace of V.

We call W the zero subspace of V.

## Lines through the origin

### Example 4

Let m be a fixed real number. Consider the subset of  $V = \mathbb{R}^2$ 

$$W := \left\{ \begin{pmatrix} x \\ mx \end{pmatrix} \mid x \in \mathbb{R} \right\}$$

Then W is a subspace of  $\mathbb{R}^2$ 

Determine whether the following is a subspace of  $\mathbb{R}^3$  or not.

$$W := \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \mid a, b, c \in \mathbb{R}, c = a - b \right\}$$

Determine whether the following is a subspace of  $\mathbb{R}^3$  or not.

$$W:=\left\{egin{pmatrix}a\\1\\0\end{pmatrix}\mid a\in\mathbb{R},\ 
ight\}$$

Determine whether the following is a subspace of  $Mat(n, n, \mathbb{R})$  or not.

$$W := \left\{ A \in \mathsf{Mat}(n, n, \mathbb{R}) \,|\, A^T = -A \right\}$$

Determine whether the following is a subspace of  $Mat(n, n, \mathbb{R})$  or not.

$$W:=\,\{A\in \mathsf{Mat}(n,n,\mathbb{R})\,|\, tr(A)=0\}$$

Determine whether the following is a subspace of  $\mathbb{P}_3$  or not.

$$W := \left\{ a_0 + a_1 X + a_2 X^2 + a_3 X^3 \, | \, a_1 = a_2 \right\}$$

Determine whether the following is a subspace of Maps  $(\mathbb{R}, \mathbb{R})$  or not.

$$C^1(-\infty,\infty):=\{f\,|\,f \text{ is differentiable }\}$$
 
$$C^2(-\infty,\infty):=\{f\,|\,f \text{ is twice differentiable }\}$$
 
$$C^\infty(-\infty,\infty):=\{f\,|\,f \text{ is infinitely many differentiable }\}$$
 — Smooth function

Give an example of a function in  $C^{\infty}(-\infty, \infty)$ ?

 $C(-\infty,\infty) := \{f \mid f \text{ is continuous }\}$ 

## Intersection of subspaces

#### Theorem 11

Let  $W_1$ ,  $W_2$  be two subspaces of a vector space V. Then, the intersection of  $W_1$  and  $W_2$  is also a subspace of V.

#### Theorem 12

Let  $W_1, W_2, ..., W_n$  be two subspaces of a vector space V. Then, the intersection of  $W_1, W_2, ..., W_n$  is also a subspace of V.

## Union of subspaces

### Example 13

Let  $W_1$ ,  $W_2$  be two subspaces of a vector space  $\mathbb{R}^2$  that are given by

$$W_1 = \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} \mid x \in \mathbb{R} \right\}, \qquad W_1 = \left\{ \begin{pmatrix} 0 \\ y \end{pmatrix} \mid y \in \mathbb{R} \right\}$$

Verify that  $W_1$ ,  $W_2$  are subspaces but  $W_1 \cup W_2$  is not.

Do HOMEWORK 1

### Linear Combination

#### **Definition 14**

If w is a vector in a vector space V, then w is said to be a **linear** combination of the vectors  $v_1, \ldots, v_n$  if w can be expressed in the form

$$w = k_1 v_1 + k_2 v_2 + \cdots + k_n v_n$$

where  $k_1, k_2, \ldots, k_n \in \mathbb{R}$  which are called the **coefficients** of the linear combination.

Express the following as linear combination of  $\mathbf{u}=(2,1,4)$ ,

 $\mathbf{v} = (1, -1, 3), \text{ and } \mathbf{w} = (3, 2, 5).$ 

- **1** (6, 11, 6)
- **2** (7, 8, 9)

## Solution



Let  $\mathbf{u} = (1, -3, 2)$ ,  $\mathbf{v} = (1, 0, -4)$ . Determine whether the following is a linear combination of  $\mathbf{u}$  and  $\mathbf{v}$ .

- (0, -3, 6)
- (1,6,-16)

Express the following as linear combination of  $A = \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix}$ ,

$$B = \begin{pmatrix} 0 & 2 \\ -2 & 4 \end{pmatrix}$$
, and  $C = \begin{pmatrix} 1 & 1 \\ -2 & 5 \end{pmatrix}$ 

## Solution



Express the following as linear combination of  $P_1 = 2 + X + 4x^2$ ,  $P_2 = 1 - X + 3x^2$ , and  $P_3 = 3 + 2X + 5X^2$ .

- **0** 0
- $2 X + 6X^2$

## Solution



## Subset generated by elements is a subspace

#### Theorem 19

If  $S = \{v_1, v_2, ..., v_n\}$  is a nonempty set of vectors in a vector space V. Then,

• The set W of all possible linear combinations of vectors in S is a subspace, i.e.,

$$W = \{k_1v_1 + k_2v_2 + \cdots + k_nv_n | k_1, k_2, \dots, k_n \in \mathbb{R}\}$$

② The set W is the "smallest" subspace of V that contain all of the vectors in S in the sense of containment relationship.

We denote the set W above by

$$W = \operatorname{span}\{v_1, \ldots, v_n\} \text{ or } W = \operatorname{span}(S) \text{ or } W = \langle v_1, \ldots, v_n \rangle$$

## **Proof**



## Recall: The equation $A\mathbf{x} = \mathbf{b}$

#### Theorem 20

The following are equivalent:

- A is invertible.
- $\bigcirc$  det(A)  $\neq$  0.
- **3** The reduced row echelon form is  $I_n$ .
- **4**  $\mathbf{A}\mathbf{x} = \mathbf{b}$  is consistent for every  $n \times 1$  matrix  $\mathbf{b}$ .
- **5**  $A\mathbf{x} = \mathbf{b}$  has a unique solution for every  $n \times 1$  matrix  $\mathbf{b}$ .

## Spanning set of the whole space

## Example 21

Determine whether  $\mathbf{v}_1=(2,-1,2),\ \mathbf{v}_2=(4,1,3),$  and  $\mathbf{v}_3=(2,2,1)$  span  $\mathbb{R}^3.$ 

## Solution



## Spanning set of the whole space

## Example 22

Determine whether  $P_1 = 1 + X + X^2$ ,  $P_2 = 3 + X$ ,  $P_3 = 5 - X + 4X^2$ , and  $P_4 = -2 - 2X + 2X^2$  span  $\mathbb{P}_2$ .

## Solution



## Standard spanning sets

#### Note:

• The standard spanning set for  $\mathbb{R}^2$  is  $e_1$ ,  $e_2$ , where

$$e_1 = (1,0) \text{ and } e_2 = (0,1)$$

• The standard spanning set for  $\mathbb{R}^3$  is  $e_1$ ,  $e_2$ ,  $e_3$ , where

$$e_1 = (1, 0, 0), e_2 = (0, 1, 0) \text{ and } e_3 = (0, 0, 1)$$

• The standard spanning set for  $\mathbb{R}^n$  is  $e_1, e_2, e_3, \ldots, e_n$ , where

$$e_1=(1,0,\dots,0), \ e_2=(0,1,\dots,0), \ e_3=(0,0,1,0,\dots,0) \ \text{and}$$
 
$$e_n=(0,0,\dots,1)$$

- The standard spanning set for  $\mathbb{P}_2$  is 1, X,  $X^2$ .
- The standard spanning set for  $\mathbb{P}_n$  is  $1, X, X^2, \dots, X^n$ .
- The standard spanning set for  $Mat(2, 2, \mathbb{R})$  is

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

### Example 23

Find a spanning set for the following subspace Let m be a fixed real number. Consider the subset of  $V=\mathbb{R}^2$ 

$$W := \left\{ \begin{pmatrix} x \\ mx \end{pmatrix} \mid x \in \mathbb{R} \right\}$$

### Example 24

Find a spanning set for the following subspace

$$W := \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \mid a, b, c \in \mathbb{R}, c = a - b \right\}$$

### Example 25

Find a spanning set for the following subspace

$$W := \left\{ A \in \mathsf{Mat}(n, n, \mathbb{R}) \,|\, A^T = -A \right\}$$

## Example 26

Find a spanning set for the following subspace

$$W := \left\{ a_0 + a_1 X + a_2 X^2 + a_3 X^3 \, | \, a_1 = a_2 \right\}$$

## **Null Space**

#### Theorem 27

Let  $A \in Mat(m, n, \mathbb{R})$  be a  $m \times n$  matrix. The subset W of  $\mathbb{R}^n$  defined by

$$W = \{\mathbf{x} | A\mathbf{x} = \mathbf{0}\}$$

is a subspace of  $\mathbb{R}^n$ .

It is called the **null space** of A, denoted by Nul(A) and it is consisting of the solutions to the equation  $A\mathbf{x} = \mathbf{0}$ .

Determine whether the 
$$\mathbf{w} = \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix}$$
 is in the null space of

$$A = \begin{pmatrix} 3 & -5 & -3 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{pmatrix}$$

### Example 29

Find a spanning set for the null space of

$$A = \begin{pmatrix} 2 & -3 & 1 \\ 6 & -9 & 3 \\ -4 & 6 & -2 \end{pmatrix}$$

### Example 30

Find a spanning set for the null space of

$$A = \begin{pmatrix} 1 & 4 & 8 \\ 2 & 5 & 6 \\ 3 & 1 & -4 \end{pmatrix}$$

Do HOMEWORK 1

## Equality of spanning sets

#### Theorem 31

Let  $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  and  $S' = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$  be two sets of vectors. Then,

$$span\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\}=span\{\mathbf{w}_1,\mathbf{w}_2,\ldots,\mathbf{w}_n\}$$
  $\iff$ 

each  $\mathbf{v}_i$  is a linear combination of  $\mathbf{w}_i$  and each  $\mathbf{w}_i$  is a linear combination of the  $\mathbf{v}_i$ 

#### Show that

$$\mathsf{span}\left\{\begin{pmatrix}1\\0\\0\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix}\right\}=\mathsf{span}\left\{\begin{pmatrix}4\\3\\0\end{pmatrix},\begin{pmatrix}3\\2\\0\end{pmatrix}\right\}$$