Section 6.1 Inner Product

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:

- Cauchy Schwarz Inequality.
- 2 Angle between vectors.
- Properties of length and distance.
- Orthogonality.
- Orthogonal Complement.

Cauchy Schwarz Ineqality

Theorem 1

If u, v are two vectors, then

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}||||\mathbf{v}||$$

Proof: Let $a = ||\mathbf{u}||^2$, $b = 2\langle \mathbf{u}, \mathbf{v} \rangle$, and $c = \langle \mathbf{v}, \mathbf{v} \rangle$. Consider $\langle t\mathbf{u} + \mathbf{v}, t\mathbf{u} + \mathbf{v} \rangle \geq 0$ so the discriminant is less than or equal to zero.

Consequences of Cauchy Schwarz Inequality

$$\begin{split} &|\left\langle \mathbf{u},\mathbf{v}\right\rangle |\leq ||\mathbf{u}||||\mathbf{v}|| \\ &\frac{|\left\langle \mathbf{u},\mathbf{v}\right\rangle |}{||\mathbf{u}|||||\mathbf{v}||} \leq 1 \\ &-1 \leq &\frac{\left\langle \mathbf{u},\mathbf{v}\right\rangle }{||\mathbf{u}|||||\mathbf{v}||} \leq 1 \\ &\cos\theta = &\frac{\left\langle \mathbf{u},\mathbf{v}\right\rangle }{||\mathbf{u}||||\mathbf{v}||} \text{ and } 0 \leq \theta \leq \pi \end{split}$$

Definition 2

The angle θ between \mathbf{u} and \mathbf{v} is defined by

$$heta = \cos^{-1}\left(rac{\langle \mathbf{u}, \mathbf{v}
angle}{||\mathbf{u}||||\mathbf{v}||}
ight)$$

Find the angle

Example 3

Find the cosine of the angle between ${\bf u}$ and ${\bf v}$, with the standard inner product.

$$\mathbf{0} \ \mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ and } \mathbf{v} = \begin{pmatrix} 4 \\ 4 \\ -4 \end{pmatrix}.$$

$$\mathbf{a} \quad \mathbf{u} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} \text{ and } \mathbf{v} = \begin{pmatrix} 5 \\ 2 \\ -3 \\ -4 \end{pmatrix}.$$

$$p = 1 + 3X - 5X^2, \ q = 2 - 3X^2.$$

$$U = \begin{pmatrix} 2 & 4 \\ 3 & 2 \end{pmatrix}, V = \begin{pmatrix} 0 & 1 \\ 0 & -2 \end{pmatrix}$$

Properties of Length and Distance

Theorem 4

If u, v, w are three vectors, then

$$||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$$
 (Triangle inequality for vectors)

$$d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{w}) + d(\mathbf{v}, \mathbf{w})$$
 (Triangle inequality for distances)

Proof: Consider $||\mathbf{u} + \mathbf{v}||^2$.

Orthogonality

Definition 5

Two vectors \mathbf{u}, \mathbf{v} are called **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Question: What is the angle between any two orthogonal vectors?

Check for orthongonality

Example 6

Determine whether \boldsymbol{u} and \boldsymbol{v} are orthogonal or not, with the standard inner product.

$$\mathbf{0} \ \mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ and } \mathbf{v} = \begin{pmatrix} 4 \\ 4 \\ -4 \end{pmatrix}.$$

$$\mathbf{u} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} \text{ and } \mathbf{v} = \begin{pmatrix} 5 \\ 2 \\ -3 \\ -4 \end{pmatrix}.$$

3
$$f = x$$
, $q = X^2$ on $[-1, 1]$.

Pythagorean Theorem

Theorem 7

If \mathbf{u}, \mathbf{v} are orthogonal vectors, then

$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}|| + ||\mathbf{v}||$$

Proof: Consider $||\mathbf{u} + \mathbf{v}||^2 = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle$.

Example 8

Show that if \mathbf{u}, \mathbf{v} are orthogonal unit vectors in V, then $||\mathbf{u} - \mathbf{v}|| = \sqrt{2}$.

Orthogonal Complement

Definition 9

If W is a subspace of an inner vector space V, then the set of all vectors in V that are orthogonal to every vector in W is called the **orthogonal** complement of W and is denoted by W^{\perp} .

$$W^{\perp} := \{\hat{w} \in V \mid \langle \hat{w}, w \rangle = 0, \text{ for all } w \in W\}$$

Theorem 10

- W^{\perp} is a subspace of W.
- **2** $W \cap W^{\perp} = \{\mathbf{0}\}$
- $(W^{\perp})^{\perp}$

Row space and null space are orthogonal

Example 11

Let $W = \text{span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ where,

$$\mathbf{w}_1 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
 , $\mathbf{w}_2 = \begin{pmatrix} -1 \\ -4 \\ 2 \end{pmatrix}$, $\mathbf{w}_3 = \begin{pmatrix} 4 \\ -5 \\ 13 \end{pmatrix}$

Row space and null space are orthogonal

Example 12

Let $W = \text{span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ where,

$$\mathbf{w}_1 = \begin{pmatrix} 3 \\ 0 \\ 1 \\ -2 \end{pmatrix}$$
, $\mathbf{w}_2 = \begin{pmatrix} -1 \\ -2 \\ -2 \\ 1 \end{pmatrix}$, $\mathbf{w}_3 = \begin{pmatrix} 4 \\ 2 \\ 3 \\ -3 \end{pmatrix}$